Loading…

CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES

The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invarianc...

Full description

Saved in:
Bibliographic Details
Published in:Mathematica scandinavica 2010-01, Vol.106 (1), p.67-87
Main Author: PESTMAN, WIEBE R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63
cites
container_end_page 87
container_issue 1
container_start_page 67
container_title Mathematica scandinavica
container_volume 106
creator PESTMAN, WIEBE R.
description The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.
doi_str_mv 10.7146/math.scand.a-15125
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7146_math_scand_a_15125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24493673</jstor_id><sourcerecordid>24493673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</originalsourceid><addsrcrecordid>eNo9kE1PwkAQQDdGExH9AyYm-weKO_tZjrUusElptS0HvDTLthslIqbLxX9vAeNp8jLz5vAQugcyUcDl484e3ifB2a92YiMQQMUFGsGUsAhioi7RiBAqIiEoXKObELYDSq74CJVpqZPa5HOc5M84zZKqMrP1kZc6qValrnAxw5nJdVLiYVmkZjgvcvy0xsVLbZbm7cy1The5eV3p6hZdefsZuru_OUarma7TRZQVc5MmWeQYsEPkKAXZyg21XHZKsU7ErYulsL6FTk4FJ7BhijmgrQeQzvrOO6qAKap47CUbI3r-6_p9CH3nm-_-Y2f7nwZIc6zSHKs0pyqNbU5VBunhLG3DYd__G5TzKZOKsV-D41sP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>PESTMAN, WIEBE R.</creator><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><description>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</description><identifier>ISSN: 0025-5521</identifier><identifier>EISSN: 1903-1807</identifier><identifier>DOI: 10.7146/math.scand.a-15125</identifier><language>eng</language><publisher>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</publisher><subject>Algebra ; Coefficients ; Correlation coefficients ; Covariance matrices ; Eigenvalues ; Linear algebra ; Mathematical theorems ; Mathematical vectors ; Statistical variance ; Symmetry</subject><ispartof>Mathematica scandinavica, 2010-01, Vol.106 (1), p.67-87</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24493673$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24493673$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><title>Mathematica scandinavica</title><description>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Correlation coefficients</subject><subject>Covariance matrices</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Statistical variance</subject><subject>Symmetry</subject><issn>0025-5521</issn><issn>1903-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQQDdGExH9AyYm-weKO_tZjrUusElptS0HvDTLthslIqbLxX9vAeNp8jLz5vAQugcyUcDl484e3ifB2a92YiMQQMUFGsGUsAhioi7RiBAqIiEoXKObELYDSq74CJVpqZPa5HOc5M84zZKqMrP1kZc6qValrnAxw5nJdVLiYVmkZjgvcvy0xsVLbZbm7cy1The5eV3p6hZdefsZuru_OUarma7TRZQVc5MmWeQYsEPkKAXZyg21XHZKsU7ErYulsL6FTk4FJ7BhijmgrQeQzvrOO6qAKap47CUbI3r-6_p9CH3nm-_-Y2f7nwZIc6zSHKs0pyqNbU5VBunhLG3DYd__G5TzKZOKsV-D41sP</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>PESTMAN, WIEBE R.</creator><general>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><author>PESTMAN, WIEBE R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Correlation coefficients</topic><topic>Covariance matrices</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Statistical variance</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematica scandinavica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PESTMAN, WIEBE R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</atitle><jtitle>Mathematica scandinavica</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>106</volume><issue>1</issue><spage>67</spage><epage>87</epage><pages>67-87</pages><issn>0025-5521</issn><eissn>1903-1807</eissn><abstract>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</abstract><pub>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</pub><doi>10.7146/math.scand.a-15125</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5521
ispartof Mathematica scandinavica, 2010-01, Vol.106 (1), p.67-87
issn 0025-5521
1903-1807
language eng
recordid cdi_crossref_primary_10_7146_math_scand_a_15125
source JSTOR Archival Journals and Primary Sources Collection
subjects Algebra
Coefficients
Correlation coefficients
Covariance matrices
Eigenvalues
Linear algebra
Mathematical theorems
Mathematical vectors
Statistical variance
Symmetry
title CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CREATING%20AND%20CLASSIFYING%20MEASURES%20OF%20LINEAR%20ASSOCIATION%20BY%20OPTIMIZATION%20TECHNIQUES&rft.jtitle=Mathematica%20scandinavica&rft.au=PESTMAN,%20WIEBE%20R.&rft.date=2010-01-01&rft.volume=106&rft.issue=1&rft.spage=67&rft.epage=87&rft.pages=67-87&rft.issn=0025-5521&rft.eissn=1903-1807&rft_id=info:doi/10.7146/math.scand.a-15125&rft_dat=%3Cjstor_cross%3E24493673%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24493673&rfr_iscdi=true