Loading…
CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES
The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invarianc...
Saved in:
Published in: | Mathematica scandinavica 2010-01, Vol.106 (1), p.67-87 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63 |
---|---|
cites | |
container_end_page | 87 |
container_issue | 1 |
container_start_page | 67 |
container_title | Mathematica scandinavica |
container_volume | 106 |
creator | PESTMAN, WIEBE R. |
description | The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not. |
doi_str_mv | 10.7146/math.scand.a-15125 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7146_math_scand_a_15125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24493673</jstor_id><sourcerecordid>24493673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</originalsourceid><addsrcrecordid>eNo9kE1PwkAQQDdGExH9AyYm-weKO_tZjrUusElptS0HvDTLthslIqbLxX9vAeNp8jLz5vAQugcyUcDl484e3ifB2a92YiMQQMUFGsGUsAhioi7RiBAqIiEoXKObELYDSq74CJVpqZPa5HOc5M84zZKqMrP1kZc6qValrnAxw5nJdVLiYVmkZjgvcvy0xsVLbZbm7cy1The5eV3p6hZdefsZuru_OUarma7TRZQVc5MmWeQYsEPkKAXZyg21XHZKsU7ErYulsL6FTk4FJ7BhijmgrQeQzvrOO6qAKap47CUbI3r-6_p9CH3nm-_-Y2f7nwZIc6zSHKs0pyqNbU5VBunhLG3DYd__G5TzKZOKsV-D41sP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>PESTMAN, WIEBE R.</creator><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><description>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</description><identifier>ISSN: 0025-5521</identifier><identifier>EISSN: 1903-1807</identifier><identifier>DOI: 10.7146/math.scand.a-15125</identifier><language>eng</language><publisher>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</publisher><subject>Algebra ; Coefficients ; Correlation coefficients ; Covariance matrices ; Eigenvalues ; Linear algebra ; Mathematical theorems ; Mathematical vectors ; Statistical variance ; Symmetry</subject><ispartof>Mathematica scandinavica, 2010-01, Vol.106 (1), p.67-87</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24493673$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24493673$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><title>Mathematica scandinavica</title><description>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</description><subject>Algebra</subject><subject>Coefficients</subject><subject>Correlation coefficients</subject><subject>Covariance matrices</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Statistical variance</subject><subject>Symmetry</subject><issn>0025-5521</issn><issn>1903-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PwkAQQDdGExH9AyYm-weKO_tZjrUusElptS0HvDTLthslIqbLxX9vAeNp8jLz5vAQugcyUcDl484e3ifB2a92YiMQQMUFGsGUsAhioi7RiBAqIiEoXKObELYDSq74CJVpqZPa5HOc5M84zZKqMrP1kZc6qValrnAxw5nJdVLiYVmkZjgvcvy0xsVLbZbm7cy1The5eV3p6hZdefsZuru_OUarma7TRZQVc5MmWeQYsEPkKAXZyg21XHZKsU7ErYulsL6FTk4FJ7BhijmgrQeQzvrOO6qAKap47CUbI3r-6_p9CH3nm-_-Y2f7nwZIc6zSHKs0pyqNbU5VBunhLG3DYd__G5TzKZOKsV-D41sP</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>PESTMAN, WIEBE R.</creator><general>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</title><author>PESTMAN, WIEBE R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Coefficients</topic><topic>Correlation coefficients</topic><topic>Covariance matrices</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Statistical variance</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PESTMAN, WIEBE R.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematica scandinavica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PESTMAN, WIEBE R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES</atitle><jtitle>Mathematica scandinavica</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>106</volume><issue>1</issue><spage>67</spage><epage>87</epage><pages>67-87</pages><issn>0025-5521</issn><eissn>1903-1807</eissn><abstract>The idea of measures of linear association, such as Pearson's correlation coefficient, can be put in a general framework by axiomization. Groups of linear transformations on Rn can be exploited to create new and classify existing measures according to their invariance properties. Thus invariance under the Euclidean transformation group leads to the class of so-called geometric measures. Similarly, a measure is called algebraic if it is invariant under scalings. Pearson's coefficient is an example of an algebraic measure; it is not geometric. It is proved that, generally, a measure of linear association cannot possibly be both geometric and algebraic. A procedure is developed to convert a geometric measure into an algebraic and vice versa. Thus a kind of a duality between algebraic and geometric measures arises. In this duality measures can be reflexive or not.</abstract><pub>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</pub><doi>10.7146/math.scand.a-15125</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5521 |
ispartof | Mathematica scandinavica, 2010-01, Vol.106 (1), p.67-87 |
issn | 0025-5521 1903-1807 |
language | eng |
recordid | cdi_crossref_primary_10_7146_math_scand_a_15125 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Algebra Coefficients Correlation coefficients Covariance matrices Eigenvalues Linear algebra Mathematical theorems Mathematical vectors Statistical variance Symmetry |
title | CREATING AND CLASSIFYING MEASURES OF LINEAR ASSOCIATION BY OPTIMIZATION TECHNIQUES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CREATING%20AND%20CLASSIFYING%20MEASURES%20OF%20LINEAR%20ASSOCIATION%20BY%20OPTIMIZATION%20TECHNIQUES&rft.jtitle=Mathematica%20scandinavica&rft.au=PESTMAN,%20WIEBE%20R.&rft.date=2010-01-01&rft.volume=106&rft.issue=1&rft.spage=67&rft.epage=87&rft.pages=67-87&rft.issn=0025-5521&rft.eissn=1903-1807&rft_id=info:doi/10.7146/math.scand.a-15125&rft_dat=%3Cjstor_cross%3E24493673%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-c2216d6b2a46e773e58dc865afd1e695401b373c12df116cafefc271372748f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24493673&rfr_iscdi=true |