Loading…
A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS
Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-Macaulay R-module of dimension n. It is shown that, (i) if projdim R(M) < ∞, then injdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞ and (ii) if injdim R(M) < ∞, then projdim _R\left...
Saved in:
Published in: | Mathematica scandinavica 2015-01, Vol.117 (1), p.150-160 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-fd0d9711e3d232fe73905758b1ac22d6c025fbf8113f855f95c1f9ff22955ad93 |
---|---|
cites | |
container_end_page | 160 |
container_issue | 1 |
container_start_page | 150 |
container_title | Mathematica scandinavica |
container_volume | 117 |
creator | BAHMANPOUR, KAMAL |
description | Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-Macaulay R-module of dimension n. It is shown that, (i) if projdim R(M) < ∞, then injdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞ and (ii) if injdim R(M) < ∞, then projdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞, where D(–) := HomR(–, E) denotes the Mathis dual functor and E := ER(R/M) is the injective hull of the residue field R/m. Also, it is shown that if (R, m) is a Noetherian complete local ring, M is a non-zero finitely generated R-module and x₁, ..., xk, (k ≥ 1), is an M-regular sequence, then $D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( {D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)} \right)} \right)} \right) \simeq M.$ In particular, Ann ${H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)}$ = Ann M. Moreover, it is shown that if R is a Noetherian ring, M is finitely generated R-module and x₁, ... , xk is an M-regular sequence, then $Ext_R^{k + 1}\left( {R/\left( {{x_1},...{x_k}} \right),M} \right) = 0$. |
doi_str_mv | 10.7146/math.scand.a-22240 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7146_math_scand_a_22240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43905430</jstor_id><sourcerecordid>43905430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-fd0d9711e3d232fe73905758b1ac22d6c025fbf8113f855f95c1f9ff22955ad93</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QBDyB1rz0bTNZelaN0ibYTOYVyFrG3Q4J01v_PemnXj1cuA87zk8ADxiFCY4ip9PZnwPXWu-utAEhJAIXYEF5ogGOEXJNVggRFjAGMG34M65ox_jKIkWQGUwl9VWFHsoS1jJ1U4UDczqFdwon9ut2OSZ2si6gUpCIfNMeGAtKynky9u8WOxVUTd-BZa7OlfytbkHN9Z8uv7hL5dgVxYqXwee8XUiaCllY2A71PEE4552hBLbJ5QjlrD0gE1LSBe3_md7sCnG1KaMWc5abLm1hHDGTMfpEpBLbzucnRt6q7-Hj5MZfjRGevKiJy969qKNnr146OkCHd14Hv6JaDoeUUR_AeZPW0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>BAHMANPOUR, KAMAL</creator><creatorcontrib>BAHMANPOUR, KAMAL</creatorcontrib><description>Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-Macaulay R-module of dimension n. It is shown that, (i) if projdim R(M) < ∞, then injdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞ and (ii) if injdim R(M) < ∞, then projdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞, where D(–) := HomR(–, E) denotes the Mathis dual functor and E := ER(R/M) is the injective hull of the residue field R/m. Also, it is shown that if (R, m) is a Noetherian complete local ring, M is a non-zero finitely generated R-module and x₁, ..., xk, (k ≥ 1), is an M-regular sequence, then $D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( {D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)} \right)} \right)} \right) \simeq M.$ In particular, Ann ${H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)}$ = Ann M. Moreover, it is shown that if R is a Noetherian ring, M is finitely generated R-module and x₁, ... , xk is an M-regular sequence, then $Ext_R^{k + 1}\left( {R/\left( {{x_1},...{x_k}} \right),M} \right) = 0$.</description><identifier>ISSN: 0025-5521</identifier><identifier>EISSN: 1903-1807</identifier><identifier>DOI: 10.7146/math.scand.a-22240</identifier><language>eng</language><publisher>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</publisher><ispartof>Mathematica scandinavica, 2015-01, Vol.117 (1), p.150-160</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-fd0d9711e3d232fe73905758b1ac22d6c025fbf8113f855f95c1f9ff22955ad93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43905430$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43905430$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>BAHMANPOUR, KAMAL</creatorcontrib><title>A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS</title><title>Mathematica scandinavica</title><description>Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-Macaulay R-module of dimension n. It is shown that, (i) if projdim R(M) < ∞, then injdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞ and (ii) if injdim R(M) < ∞, then projdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞, where D(–) := HomR(–, E) denotes the Mathis dual functor and E := ER(R/M) is the injective hull of the residue field R/m. Also, it is shown that if (R, m) is a Noetherian complete local ring, M is a non-zero finitely generated R-module and x₁, ..., xk, (k ≥ 1), is an M-regular sequence, then $D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( {D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)} \right)} \right)} \right) \simeq M.$ In particular, Ann ${H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)}$ = Ann M. Moreover, it is shown that if R is a Noetherian ring, M is finitely generated R-module and x₁, ... , xk is an M-regular sequence, then $Ext_R^{k + 1}\left( {R/\left( {{x_1},...{x_k}} \right),M} \right) = 0$.</description><issn>0025-5521</issn><issn>1903-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKd_QBDyB1rz0bTNZelaN0ibYTOYVyFrG3Q4J01v_PemnXj1cuA87zk8ADxiFCY4ip9PZnwPXWu-utAEhJAIXYEF5ogGOEXJNVggRFjAGMG34M65ox_jKIkWQGUwl9VWFHsoS1jJ1U4UDczqFdwon9ut2OSZ2si6gUpCIfNMeGAtKynky9u8WOxVUTd-BZa7OlfytbkHN9Z8uv7hL5dgVxYqXwee8XUiaCllY2A71PEE4552hBLbJ5QjlrD0gE1LSBe3_md7sCnG1KaMWc5abLm1hHDGTMfpEpBLbzucnRt6q7-Hj5MZfjRGevKiJy969qKNnr146OkCHd14Hv6JaDoeUUR_AeZPW0o</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>BAHMANPOUR, KAMAL</creator><general>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS</title><author>BAHMANPOUR, KAMAL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-fd0d9711e3d232fe73905758b1ac22d6c025fbf8113f855f95c1f9ff22955ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAHMANPOUR, KAMAL</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematica scandinavica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAHMANPOUR, KAMAL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS</atitle><jtitle>Mathematica scandinavica</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>117</volume><issue>1</issue><spage>150</spage><epage>160</epage><pages>150-160</pages><issn>0025-5521</issn><eissn>1903-1807</eissn><abstract>Let (R, m) be a commutative Noetherian complete local ring and let M be a non-zero Cohen-Macaulay R-module of dimension n. It is shown that, (i) if projdim R(M) < ∞, then injdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞ and (ii) if injdim R(M) < ∞, then projdim _R\left( {D\left( {H_m^n\left( m \right)} \right)} \right)$ < ∞, where D(–) := HomR(–, E) denotes the Mathis dual functor and E := ER(R/M) is the injective hull of the residue field R/m. Also, it is shown that if (R, m) is a Noetherian complete local ring, M is a non-zero finitely generated R-module and x₁, ..., xk, (k ≥ 1), is an M-regular sequence, then $D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( {D\left( {H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)} \right)} \right)} \right) \simeq M.$ In particular, Ann ${H_{\left( {{x_1},...{x_k}} \right)}^k\left( M \right)}$ = Ann M. Moreover, it is shown that if R is a Noetherian ring, M is finitely generated R-module and x₁, ... , xk is an M-regular sequence, then $Ext_R^{k + 1}\left( {R/\left( {{x_1},...{x_k}} \right),M} \right) = 0$.</abstract><pub>DANSK MATEMATISK FORENING / ÍSLENZKA STÆRÐFRÆÐAFÉLAGIÐ / NORSK MATEMATISK FORENING</pub><doi>10.7146/math.scand.a-22240</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5521 |
ispartof | Mathematica scandinavica, 2015-01, Vol.117 (1), p.150-160 |
issn | 0025-5521 1903-1807 |
language | eng |
recordid | cdi_crossref_primary_10_7146_math_scand_a_22240 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | A COMPLEX OF MODULES AND ITS APPLICATIONS TO LOCAL COHOMOLOGY AND EXTENSION FUNCTORS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20COMPLEX%20OF%20MODULES%20AND%20ITS%20APPLICATIONS%20TO%20LOCAL%20COHOMOLOGY%20AND%20EXTENSION%20FUNCTORS&rft.jtitle=Mathematica%20scandinavica&rft.au=BAHMANPOUR,%20KAMAL&rft.date=2015-01-01&rft.volume=117&rft.issue=1&rft.spage=150&rft.epage=160&rft.pages=150-160&rft.issn=0025-5521&rft.eissn=1903-1807&rft_id=info:doi/10.7146/math.scand.a-22240&rft_dat=%3Cjstor_cross%3E43905430%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-fd0d9711e3d232fe73905758b1ac22d6c025fbf8113f855f95c1f9ff22955ad93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43905430&rfr_iscdi=true |