Loading…
A reductionist paradigm for high-throughput behavioural fingerprinting in Drosophila melanogaster
Understanding how the brain encodes behaviour is the ultimate goal of neuroscience and the ability to objectively and reproducibly describe and quantify behaviour is a necessary milestone on this path. Recent technological progresses in machine learning and computational power have boosted the devel...
Saved in:
Published in: | eLife 2023-11, Vol.12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding how the brain encodes behaviour is the ultimate goal of neuroscience and the ability to objectively and reproducibly describe and quantify behaviour is a necessary milestone on this path. Recent technological progresses in machine learning and computational power have boosted the development and adoption of systems leveraging on high-resolution video recording to track an animal pose and describe behaviour in all four dimensions. However, the high temporal and spatial resolution that these systems offer must come as a compromise with their throughput and accessibility. Here, we describe
coccinella
, an open-source reductionist framework combining high-throughput analysis of behaviour using real-time tracking on a distributed mesh of microcomputers (ethoscopes) with resource-lean statistical learning (HCTSA/Catch22). Coccinella is a reductionist system, yet outperforms state-of-the-art alternatives when exploring the pharmacobehaviour in
Drosophila melanogaster
. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/eLife.86695.3 |