Loading…
Sinter-free stretchable conductive inks composed of polystyrene-block-polybutadiene-block-polystyrene and silver flakes in tetrahydrofuran
Development of sinter-free stretchable conductive inks is critically important to expand the range of materials and applications for flexible electronics. However, conventional stretchable conductive inks require high temperature sintering, which may damage the heat-frail substrates. In this study,...
Saved in:
Published in: | Applied physics express 2019-07, Vol.12 (7), p.75001 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Development of sinter-free stretchable conductive inks is critically important to expand the range of materials and applications for flexible electronics. However, conventional stretchable conductive inks require high temperature sintering, which may damage the heat-frail substrates. In this study, we developed sinter-free stretchable conductive inks composed of polystyrene-block-polybutadiene-block-polystyrene (SBS) and silver flakes in tetrahydrofuran (THF). The high volatility and polarity of THF induced the densification and alignment of silver flakes in the SBS matrix, where silver flakes with large surface area and high aspect ratio were formed into the multistacked structure, resulting in the increase of conductive pathways in the stretched wiring. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.7567/1882-0786/ab21b8 |