Loading…
Simulation of current-voltage curves for inverted planar structure perovskite solar cells using equivalent circuit model with inductance
Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C6...
Saved in:
Published in: | Applied physics express 2017-02, Vol.10 (2), p.25701 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer. In the cases, the opposite trend of the I-V hysteresis has been observed where the forward scan shows slightly higher efficiency than the reverse scan. In this paper, an equivalent circuit model with inductance is proposed. This model consists of a Schottky diode involving a parasitic inductance focusing PCBM/Al(Ca) interface and accurately represents the opposite trend of the I-V hysteresis of the p-PSC with an inverted structure. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.7567/APEX.10.025701 |