Loading…
Effect of a radical exposure nitridation surface on the charge stability of shallow nitrogen-vacancy centers in diamond
A nitridation process of a diamond surface with nitrogen radical exposure far from the radio-frequency plasma for the stabilization of a negatively charged nitrogen-vacancy (NV−) centers near the surface is presented. At a nitrogen coverage of as high as 0.9 monolayers, high average Rabi contrasts o...
Saved in:
Published in: | Applied physics express 2017-05, Vol.10 (5), p.55503 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nitridation process of a diamond surface with nitrogen radical exposure far from the radio-frequency plasma for the stabilization of a negatively charged nitrogen-vacancy (NV−) centers near the surface is presented. At a nitrogen coverage of as high as 0.9 monolayers, high average Rabi contrasts of 0.40 ± 0.06 and 0.46 ± 0.03 have been obtained for single NV− centers formed by shallow nitrogen implantation with acceleration voltages of 1 and 2 keV, respectively. This indicates that nitrogen termination by a radical exposure process produces an electric charge state suitable for single NV− centers near the surface compared with the states obtained for alternatively terminated surfaces. |
---|---|
ISSN: | 1882-0778 1882-0786 |
DOI: | 10.7567/APEX.10.055503 |