Loading…

Quantitative evaluation of thermal runaway tolerance in space solar cells

In thin-film solar cells such as inverted metamorphic multijunction solar cells, a local shunt spot can cause thermal runaway because of low thermal conductivity along the in-plane direction of the junction. Since electrical performance can be greatly reduced by thermal runaway, an appropriate desig...

Full description

Saved in:
Bibliographic Details
Published in:Japanese Journal of Applied Physics 2018-08, Vol.57 (8S3), p.8
Main Authors: Nakamura, Tetsuya, Sumita, Taishi, Imaizumi, Mitsuru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473
cites cdi_FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473
container_end_page
container_issue 8S3
container_start_page 8
container_title Japanese Journal of Applied Physics
container_volume 57
creator Nakamura, Tetsuya
Sumita, Taishi
Imaizumi, Mitsuru
description In thin-film solar cells such as inverted metamorphic multijunction solar cells, a local shunt spot can cause thermal runaway because of low thermal conductivity along the in-plane direction of the junction. Since electrical performance can be greatly reduced by thermal runaway, an appropriate design of the solar cells is necessary to prevent this mechanism. However, quantitative analysis of the thermal runaway is difficult because its threshold is usually strongly affected by the testing conditions and the characteristics of the shunt spots. In this study, we proposed a method of analyzing the thermal runaway characteristics quantitatively. We intentionally induced a thermal runaway under a simulated space environment with an arbitrary artificial shunt spot by a laser beam. The thermal resistance of the shunt spots and the threshold temperature for the thermal runaway were estimated using electrical and thermal models. This method enables an optimized design of thin-film solar cells.
doi_str_mv 10.7567/JJAP.57.08RD03
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7567_JJAP_57_08RD03</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167303128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473</originalsourceid><addsrcrecordid>eNqVkElrwzAUhEVpoWnaa8-C3gp2tVmyjyHdUgLdz-JFlqiNY7mSnZJ_X4cEeu7pzYNvZmAQuqQkVZlUN09Ps5c0UynJ324JP0ITyoVKBJHZMZoQwmgiCsZO0VmM9fjKTNAJWrwO0PZVD321sdhuoBlG6VvsHe6_bFhDg8PQwg9sce8bG6A1Flctjh2MIvoGAja2aeI5OnHQRHtxuFP0eX_3MX9Mls8Pi_lsmRghVJ-Uq5UxlOUyF2CB5Sy3ylAOAFKVkioinTPWKVKS3BTgnMwMW5mskMKwQig-RVf73C7478HGXtd-CO1YqRmVihM-po9UuqdM8DEG63QXqjWEraZE7-bSu7l0pvR-rtFwvTdUvvtL_Bdc19DtoPydH0DdlY7_Apm1ehU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2167303128</pqid></control><display><type>article</type><title>Quantitative evaluation of thermal runaway tolerance in space solar cells</title><source>IOPscience extra</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Nakamura, Tetsuya ; Sumita, Taishi ; Imaizumi, Mitsuru</creator><creatorcontrib>Nakamura, Tetsuya ; Sumita, Taishi ; Imaizumi, Mitsuru</creatorcontrib><description>In thin-film solar cells such as inverted metamorphic multijunction solar cells, a local shunt spot can cause thermal runaway because of low thermal conductivity along the in-plane direction of the junction. Since electrical performance can be greatly reduced by thermal runaway, an appropriate design of the solar cells is necessary to prevent this mechanism. However, quantitative analysis of the thermal runaway is difficult because its threshold is usually strongly affected by the testing conditions and the characteristics of the shunt spots. In this study, we proposed a method of analyzing the thermal runaway characteristics quantitatively. We intentionally induced a thermal runaway under a simulated space environment with an arbitrary artificial shunt spot by a laser beam. The thermal resistance of the shunt spots and the threshold temperature for the thermal runaway were estimated using electrical and thermal models. This method enables an optimized design of thin-film solar cells.</description><identifier>ISSN: 0021-4922</identifier><identifier>EISSN: 1347-4065</identifier><identifier>DOI: 10.7567/JJAP.57.08RD03</identifier><identifier>CODEN: JJAPB6</identifier><language>eng</language><publisher>Tokyo: The Japan Society of Applied Physics</publisher><subject>Aerospace environments ; Computer simulation ; Design optimization ; Electrical resistivity ; Laser beams ; Photovoltaic cells ; Quantitative analysis ; Shunt resistance ; Solar cells ; Thermal analysis ; Thermal conductivity ; Thermal resistance ; Thermal runaway ; Thin films</subject><ispartof>Japanese Journal of Applied Physics, 2018-08, Vol.57 (8S3), p.8</ispartof><rights>2018 The Japan Society of Applied Physics</rights><rights>Copyright Japanese Journal of Applied Physics Aug 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473</citedby><cites>FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.7567/JJAP.57.08RD03/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,53840</link.rule.ids></links><search><creatorcontrib>Nakamura, Tetsuya</creatorcontrib><creatorcontrib>Sumita, Taishi</creatorcontrib><creatorcontrib>Imaizumi, Mitsuru</creatorcontrib><title>Quantitative evaluation of thermal runaway tolerance in space solar cells</title><title>Japanese Journal of Applied Physics</title><addtitle>Jpn. J. Appl. Phys</addtitle><description>In thin-film solar cells such as inverted metamorphic multijunction solar cells, a local shunt spot can cause thermal runaway because of low thermal conductivity along the in-plane direction of the junction. Since electrical performance can be greatly reduced by thermal runaway, an appropriate design of the solar cells is necessary to prevent this mechanism. However, quantitative analysis of the thermal runaway is difficult because its threshold is usually strongly affected by the testing conditions and the characteristics of the shunt spots. In this study, we proposed a method of analyzing the thermal runaway characteristics quantitatively. We intentionally induced a thermal runaway under a simulated space environment with an arbitrary artificial shunt spot by a laser beam. The thermal resistance of the shunt spots and the threshold temperature for the thermal runaway were estimated using electrical and thermal models. This method enables an optimized design of thin-film solar cells.</description><subject>Aerospace environments</subject><subject>Computer simulation</subject><subject>Design optimization</subject><subject>Electrical resistivity</subject><subject>Laser beams</subject><subject>Photovoltaic cells</subject><subject>Quantitative analysis</subject><subject>Shunt resistance</subject><subject>Solar cells</subject><subject>Thermal analysis</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Thermal runaway</subject><subject>Thin films</subject><issn>0021-4922</issn><issn>1347-4065</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVkElrwzAUhEVpoWnaa8-C3gp2tVmyjyHdUgLdz-JFlqiNY7mSnZJ_X4cEeu7pzYNvZmAQuqQkVZlUN09Ps5c0UynJ324JP0ITyoVKBJHZMZoQwmgiCsZO0VmM9fjKTNAJWrwO0PZVD321sdhuoBlG6VvsHe6_bFhDg8PQwg9sce8bG6A1Flctjh2MIvoGAja2aeI5OnHQRHtxuFP0eX_3MX9Mls8Pi_lsmRghVJ-Uq5UxlOUyF2CB5Sy3ylAOAFKVkioinTPWKVKS3BTgnMwMW5mskMKwQig-RVf73C7478HGXtd-CO1YqRmVihM-po9UuqdM8DEG63QXqjWEraZE7-bSu7l0pvR-rtFwvTdUvvtL_Bdc19DtoPydH0DdlY7_Apm1ehU</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Nakamura, Tetsuya</creator><creator>Sumita, Taishi</creator><creator>Imaizumi, Mitsuru</creator><general>The Japan Society of Applied Physics</general><general>Japanese Journal of Applied Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180801</creationdate><title>Quantitative evaluation of thermal runaway tolerance in space solar cells</title><author>Nakamura, Tetsuya ; Sumita, Taishi ; Imaizumi, Mitsuru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerospace environments</topic><topic>Computer simulation</topic><topic>Design optimization</topic><topic>Electrical resistivity</topic><topic>Laser beams</topic><topic>Photovoltaic cells</topic><topic>Quantitative analysis</topic><topic>Shunt resistance</topic><topic>Solar cells</topic><topic>Thermal analysis</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Thermal runaway</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakamura, Tetsuya</creatorcontrib><creatorcontrib>Sumita, Taishi</creatorcontrib><creatorcontrib>Imaizumi, Mitsuru</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Japanese Journal of Applied Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakamura, Tetsuya</au><au>Sumita, Taishi</au><au>Imaizumi, Mitsuru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative evaluation of thermal runaway tolerance in space solar cells</atitle><jtitle>Japanese Journal of Applied Physics</jtitle><addtitle>Jpn. J. Appl. Phys</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>57</volume><issue>8S3</issue><spage>8</spage><pages>8-</pages><issn>0021-4922</issn><eissn>1347-4065</eissn><coden>JJAPB6</coden><abstract>In thin-film solar cells such as inverted metamorphic multijunction solar cells, a local shunt spot can cause thermal runaway because of low thermal conductivity along the in-plane direction of the junction. Since electrical performance can be greatly reduced by thermal runaway, an appropriate design of the solar cells is necessary to prevent this mechanism. However, quantitative analysis of the thermal runaway is difficult because its threshold is usually strongly affected by the testing conditions and the characteristics of the shunt spots. In this study, we proposed a method of analyzing the thermal runaway characteristics quantitatively. We intentionally induced a thermal runaway under a simulated space environment with an arbitrary artificial shunt spot by a laser beam. The thermal resistance of the shunt spots and the threshold temperature for the thermal runaway were estimated using electrical and thermal models. This method enables an optimized design of thin-film solar cells.</abstract><cop>Tokyo</cop><pub>The Japan Society of Applied Physics</pub><doi>10.7567/JJAP.57.08RD03</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4922
ispartof Japanese Journal of Applied Physics, 2018-08, Vol.57 (8S3), p.8
issn 0021-4922
1347-4065
language eng
recordid cdi_crossref_primary_10_7567_JJAP_57_08RD03
source IOPscience extra; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Aerospace environments
Computer simulation
Design optimization
Electrical resistivity
Laser beams
Photovoltaic cells
Quantitative analysis
Shunt resistance
Solar cells
Thermal analysis
Thermal conductivity
Thermal resistance
Thermal runaway
Thin films
title Quantitative evaluation of thermal runaway tolerance in space solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20evaluation%20of%20thermal%20runaway%20tolerance%20in%20space%20solar%20cells&rft.jtitle=Japanese%20Journal%20of%20Applied%20Physics&rft.au=Nakamura,%20Tetsuya&rft.date=2018-08-01&rft.volume=57&rft.issue=8S3&rft.spage=8&rft.pages=8-&rft.issn=0021-4922&rft.eissn=1347-4065&rft.coden=JJAPB6&rft_id=info:doi/10.7567/JJAP.57.08RD03&rft_dat=%3Cproquest_cross%3E2167303128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-dbbcc128684aea2828e7c13aaa67d61706ffcef70d08c9aff65c2bc5964c29473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2167303128&rft_id=info:pmid/&rfr_iscdi=true