Loading…
COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS
Let N be a nest on a Hilbert space H and Alg N the corresponding nest algebra. We obtain a characterization of the compact and weakly compact multiplication operators defined on nest algebras. This characterization leads to a description of the closed ideal generated by the compact elements of Alg N...
Saved in:
Published in: | Journal of operator theory 2017, Vol.77 (1), p.171-189 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 189 |
container_issue | 1 |
container_start_page | 171 |
container_title | Journal of operator theory |
container_volume | 77 |
creator | ANDREOLAS, G. ANOUSSIS, M. |
description | Let N be a nest on a Hilbert space H and Alg N the corresponding nest algebra. We obtain a characterization of the compact and weakly compact multiplication operators defined on nest algebras. This characterization leads to a description of the closed ideal generated by the compact elements of Alg N. We also show that there is no non-zero weakly compact multiplication operator on Alg N/Alg N ∩ K(H). |
doi_str_mv | 10.7900/jot.2016mar10.2090 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7900_jot_2016mar10_2090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26502163</jstor_id><sourcerecordid>26502163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-b8fb45d6a06b2d207c1610fc408065980385ffb90e829c81a46241afbda501113</originalsourceid><addsrcrecordid>eNo9z9tqg0AQgOGltFCb9gUKBV_AdGZ23cOlFZsKJoqaa_G00NBicb3p29eQkqthBv6Bj7FnhK0yAK-nadkSoPxu5_VEYOCGeagFBkoJccs84MoEAkjcswfnTgAcQZHHMM73RRTX_v6Y1WmRpXFUp_nBz4ukjOq8rPx1OSRV7UfZLnkro-qR3dn2y41P_3PDju9JHX8EWb5b6yzoSYol6LTtRDjIFmRHA4HqUSLYXoAGGRoNXIfWdgZGTabX2ApJAlvbDW0IiMg3jC5_-3lybh5t8zN_rr7fBqE5o5sV3VzRzRm9Ri-X6OSWab4WJEMglJz_AX3pT8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>ANDREOLAS, G. ; ANOUSSIS, M.</creator><creatorcontrib>ANDREOLAS, G. ; ANOUSSIS, M.</creatorcontrib><description>Let N be a nest on a Hilbert space H and Alg N the corresponding nest algebra. We obtain a characterization of the compact and weakly compact multiplication operators defined on nest algebras. This characterization leads to a description of the closed ideal generated by the compact elements of Alg N. We also show that there is no non-zero weakly compact multiplication operator on Alg N/Alg N ∩ K(H).</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><identifier>DOI: 10.7900/jot.2016mar10.2090</identifier><language>eng</language><publisher>The Theta Foundation</publisher><ispartof>Journal of operator theory, 2017, Vol.77 (1), p.171-189</ispartof><rights>Copyright by Theta, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26502163$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26502163$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>ANDREOLAS, G.</creatorcontrib><creatorcontrib>ANOUSSIS, M.</creatorcontrib><title>COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS</title><title>Journal of operator theory</title><description>Let N be a nest on a Hilbert space H and Alg N the corresponding nest algebra. We obtain a characterization of the compact and weakly compact multiplication operators defined on nest algebras. This characterization leads to a description of the closed ideal generated by the compact elements of Alg N. We also show that there is no non-zero weakly compact multiplication operator on Alg N/Alg N ∩ K(H).</description><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9z9tqg0AQgOGltFCb9gUKBV_AdGZ23cOlFZsKJoqaa_G00NBicb3p29eQkqthBv6Bj7FnhK0yAK-nadkSoPxu5_VEYOCGeagFBkoJccs84MoEAkjcswfnTgAcQZHHMM73RRTX_v6Y1WmRpXFUp_nBz4ukjOq8rPx1OSRV7UfZLnkro-qR3dn2y41P_3PDju9JHX8EWb5b6yzoSYol6LTtRDjIFmRHA4HqUSLYXoAGGRoNXIfWdgZGTabX2ApJAlvbDW0IiMg3jC5_-3lybh5t8zN_rr7fBqE5o5sV3VzRzRm9Ri-X6OSWab4WJEMglJz_AX3pT8Q</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>ANDREOLAS, G.</creator><creator>ANOUSSIS, M.</creator><general>The Theta Foundation</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS</title><author>ANDREOLAS, G. ; ANOUSSIS, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-b8fb45d6a06b2d207c1610fc408065980385ffb90e829c81a46241afbda501113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDREOLAS, G.</creatorcontrib><creatorcontrib>ANOUSSIS, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDREOLAS, G.</au><au>ANOUSSIS, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS</atitle><jtitle>Journal of operator theory</jtitle><date>2017</date><risdate>2017</risdate><volume>77</volume><issue>1</issue><spage>171</spage><epage>189</epage><pages>171-189</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>Let N be a nest on a Hilbert space H and Alg N the corresponding nest algebra. We obtain a characterization of the compact and weakly compact multiplication operators defined on nest algebras. This characterization leads to a description of the closed ideal generated by the compact elements of Alg N. We also show that there is no non-zero weakly compact multiplication operator on Alg N/Alg N ∩ K(H).</abstract><pub>The Theta Foundation</pub><doi>10.7900/jot.2016mar10.2090</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-4024 |
ispartof | Journal of operator theory, 2017, Vol.77 (1), p.171-189 |
issn | 0379-4024 1841-7744 |
language | eng |
recordid | cdi_crossref_primary_10_7900_jot_2016mar10_2090 |
source | JSTOR Archival Journals and Primary Sources Collection |
title | COMPACT MULTIPLICATION OPERATORS ON NEST ALGEBRAS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPACT%20MULTIPLICATION%20OPERATORS%20ON%20NEST%20ALGEBRAS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=ANDREOLAS,%20G.&rft.date=2017&rft.volume=77&rft.issue=1&rft.spage=171&rft.epage=189&rft.pages=171-189&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/10.7900/jot.2016mar10.2090&rft_dat=%3Cjstor_cross%3E26502163%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-b8fb45d6a06b2d207c1610fc408065980385ffb90e829c81a46241afbda501113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26502163&rfr_iscdi=true |