Loading…

Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells

Steam and autothermal reforming of propane over Ni–Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873–1073 K. The weight ratio for Ni, Rh and Ce 0.8Gd 0.2O 2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2010-01, Vol.195 (2), p.649-661
Main Authors: Boaro, M., Modafferi, V., Pappacena, A., Llorca, J., Baglio, V., Frusteri, F., Frontera, P., Trovarelli, A., Antonucci, P.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623
cites cdi_FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623
container_end_page 661
container_issue 2
container_start_page 649
container_title Journal of power sources
container_volume 195
creator Boaro, M.
Modafferi, V.
Pappacena, A.
Llorca, J.
Baglio, V.
Frusteri, F.
Frontera, P.
Trovarelli, A.
Antonucci, P.L.
description Steam and autothermal reforming of propane over Ni–Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873–1073 K. The weight ratio for Ni, Rh and Ce 0.8Gd 0.2O 2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions. The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar. At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H 2 + CO) productivity. Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation. In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.
doi_str_mv 10.1016/j.jpowsour.2009.08.006
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_189108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309013251</els_id><sourcerecordid>34847912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623</originalsourceid><addsrcrecordid>eNqFUctuFDEQHCGQWAK_gHyB207a9jxvoBWQSBFIKHfLY_cEr2bswfaQ5MY_5A_5EnrZBY452G7bVd1dXUXxmkPJgTfn-3K_hNsU1lgKgL6ErgRonhQb3rVyK9q6flpsQLbdtm1r-bx4kdIeADhvYVM87MK86OhS8GzAfIvo2Wf36-fD12_nN9qGyXmnmQ0LWmYwUmx01tN9yok5zyKOIc7O37AwsiWGRXtk9MS0DxaZm5cJZ_RZZxf8H4bzGeOM1umMLFF-y8KdI-y44kQlpim9LJ6Nekr46nSeFdcfP1zvLrZXXz5d7t5fbU1VNXmLHIW1TddXtm7GoZd9PyDazthhBCllJe3YSwumbm3FB1OZvqavRsjWSNrPCn5Ma9JqVESSR9pU0O7_5bAEtELxrufQEeftkUNav6-YsppdOjRNusOalKy6qu25eBQoKFstBSdgc-oihpRonmqJbtbxXnFQB3_VXv31Vx38VdAp8peIb04VdDJ6GqP2xqV_bCGA9wA14d4dcUij_OEwqmQcekMWkMysbHCPlfoNM_7EYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21085321</pqid></control><display><type>article</type><title>Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Boaro, M. ; Modafferi, V. ; Pappacena, A. ; Llorca, J. ; Baglio, V. ; Frusteri, F. ; Frontera, P. ; Trovarelli, A. ; Antonucci, P.L.</creator><creatorcontrib>Boaro, M. ; Modafferi, V. ; Pappacena, A. ; Llorca, J. ; Baglio, V. ; Frusteri, F. ; Frontera, P. ; Trovarelli, A. ; Antonucci, P.L.</creatorcontrib><description>Steam and autothermal reforming of propane over Ni–Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873–1073 K. The weight ratio for Ni, Rh and Ce 0.8Gd 0.2O 2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions. The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar. At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H 2 + CO) productivity. Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation. In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.08.006</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Biocombustibles ; Catalitzadors ; Catalysts ; Energies ; Energy ; Energy. Thermal use of fuels ; Enginyeria química ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Hidrogen com a combustible ; Hydrogen as fuel ; Hydrogen production ; Ni–Rh/GDC catalyst ; Propane reforming ; Química del medi ambient ; Recursos energètics renovables ; SOFC ; Àrees temàtiques de la UPC</subject><ispartof>Journal of power sources, 2010-01, Vol.195 (2), p.649-661</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623</citedby><cites>FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22019005$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Boaro, M.</creatorcontrib><creatorcontrib>Modafferi, V.</creatorcontrib><creatorcontrib>Pappacena, A.</creatorcontrib><creatorcontrib>Llorca, J.</creatorcontrib><creatorcontrib>Baglio, V.</creatorcontrib><creatorcontrib>Frusteri, F.</creatorcontrib><creatorcontrib>Frontera, P.</creatorcontrib><creatorcontrib>Trovarelli, A.</creatorcontrib><creatorcontrib>Antonucci, P.L.</creatorcontrib><title>Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells</title><title>Journal of power sources</title><description>Steam and autothermal reforming of propane over Ni–Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873–1073 K. The weight ratio for Ni, Rh and Ce 0.8Gd 0.2O 2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions. The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar. At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H 2 + CO) productivity. Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation. In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.</description><subject>Applied sciences</subject><subject>Biocombustibles</subject><subject>Catalitzadors</subject><subject>Catalysts</subject><subject>Energies</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Enginyeria química</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Hidrogen com a combustible</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen production</subject><subject>Ni–Rh/GDC catalyst</subject><subject>Propane reforming</subject><subject>Química del medi ambient</subject><subject>Recursos energètics renovables</subject><subject>SOFC</subject><subject>Àrees temàtiques de la UPC</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUctuFDEQHCGQWAK_gHyB207a9jxvoBWQSBFIKHfLY_cEr2bswfaQ5MY_5A_5EnrZBY452G7bVd1dXUXxmkPJgTfn-3K_hNsU1lgKgL6ErgRonhQb3rVyK9q6flpsQLbdtm1r-bx4kdIeADhvYVM87MK86OhS8GzAfIvo2Wf36-fD12_nN9qGyXmnmQ0LWmYwUmx01tN9yok5zyKOIc7O37AwsiWGRXtk9MS0DxaZm5cJZ_RZZxf8H4bzGeOM1umMLFF-y8KdI-y44kQlpim9LJ6Nekr46nSeFdcfP1zvLrZXXz5d7t5fbU1VNXmLHIW1TddXtm7GoZd9PyDazthhBCllJe3YSwumbm3FB1OZvqavRsjWSNrPCn5Ma9JqVESSR9pU0O7_5bAEtELxrufQEeftkUNav6-YsppdOjRNusOalKy6qu25eBQoKFstBSdgc-oihpRonmqJbtbxXnFQB3_VXv31Vx38VdAp8peIb04VdDJ6GqP2xqV_bCGA9wA14d4dcUij_OEwqmQcekMWkMysbHCPlfoNM_7EYA</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Boaro, M.</creator><creator>Modafferi, V.</creator><creator>Pappacena, A.</creator><creator>Llorca, J.</creator><creator>Baglio, V.</creator><creator>Frusteri, F.</creator><creator>Frontera, P.</creator><creator>Trovarelli, A.</creator><creator>Antonucci, P.L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>XX2</scope></search><sort><creationdate>20100115</creationdate><title>Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells</title><author>Boaro, M. ; Modafferi, V. ; Pappacena, A. ; Llorca, J. ; Baglio, V. ; Frusteri, F. ; Frontera, P. ; Trovarelli, A. ; Antonucci, P.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Biocombustibles</topic><topic>Catalitzadors</topic><topic>Catalysts</topic><topic>Energies</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Enginyeria química</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Hidrogen com a combustible</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen production</topic><topic>Ni–Rh/GDC catalyst</topic><topic>Propane reforming</topic><topic>Química del medi ambient</topic><topic>Recursos energètics renovables</topic><topic>SOFC</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boaro, M.</creatorcontrib><creatorcontrib>Modafferi, V.</creatorcontrib><creatorcontrib>Pappacena, A.</creatorcontrib><creatorcontrib>Llorca, J.</creatorcontrib><creatorcontrib>Baglio, V.</creatorcontrib><creatorcontrib>Frusteri, F.</creatorcontrib><creatorcontrib>Frontera, P.</creatorcontrib><creatorcontrib>Trovarelli, A.</creatorcontrib><creatorcontrib>Antonucci, P.L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Recercat</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boaro, M.</au><au>Modafferi, V.</au><au>Pappacena, A.</au><au>Llorca, J.</au><au>Baglio, V.</au><au>Frusteri, F.</au><au>Frontera, P.</au><au>Trovarelli, A.</au><au>Antonucci, P.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells</atitle><jtitle>Journal of power sources</jtitle><date>2010-01-15</date><risdate>2010</risdate><volume>195</volume><issue>2</issue><spage>649</spage><epage>661</epage><pages>649-661</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Steam and autothermal reforming of propane over Ni–Rh/GDC catalysts prepared by coprecipitation and by Pechini method were investigated in the temperature range 873–1073 K. The weight ratio for Ni, Rh and Ce 0.8Gd 0.2O 2 (45:5:50) and the operating temperatures were chosen in order to gain propaedeutical information on fuel reactivity under typical intermediate solid oxide fuel cell (IT-SOFC) operating conditions. The Pechini synthesis allows to obtain catalysts with lower surface area, smaller nickel crystallites and a bimodal distribution of rhodium in comparison to the coprecipitation method. Despite the different methods of synthesis lead to catalysts with different morphological and structural properties, the activity of catalysts is quite similar. At reaction temperature higher than 973 K, under both steam reforming (SR) and autothermal reforming (ATR), the catalysts show high propane conversion and syngas (H 2 + CO) productivity. Deactivation of catalysts was observed at 873 and 973 K under SR conditions due to coke formation. In ATR, coke formation was almost completely depressed and the catalysts resulted to be very stable even at low reaction temperature (873 K). In SR coke formation occurs with higher rate on the catalyst having higher Ni dispersion, probably since propane cracking reaction is the pre-eminent phenomenon in promoting coke formation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.08.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010-01, Vol.195 (2), p.649-661
issn 0378-7753
1873-2755
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_189108
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Applied sciences
Biocombustibles
Catalitzadors
Catalysts
Energies
Energy
Energy. Thermal use of fuels
Enginyeria química
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
Hidrogen com a combustible
Hydrogen as fuel
Hydrogen production
Ni–Rh/GDC catalyst
Propane reforming
Química del medi ambient
Recursos energètics renovables
SOFC
Àrees temàtiques de la UPC
title Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20between%20Ni%E2%80%93Rh/gadolinia%20doped%20ceria%20catalysts%20in%20reforming%20of%20propane%20for%20anode%20implementations%20in%20intermediate%20solid%20oxide%20fuel%20cells&rft.jtitle=Journal%20of%20power%20sources&rft.au=Boaro,%20M.&rft.date=2010-01-15&rft.volume=195&rft.issue=2&rft.spage=649&rft.epage=661&rft.pages=649-661&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.08.006&rft_dat=%3Cproquest_csuc_%3E34847912%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-e1e2dd6894d56fb9399beed8cdbf033343df93d0c57d41bc4c95dbf6237c3623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21085321&rft_id=info:pmid/&rfr_iscdi=true