Loading…

Low flammability, foam-like materials based on ammonium alginate and sodium montmorillonite clay

Low flammability, foam-like materials based on bio-based, renewable ammonium alginate and sodium montmorillonite clay were fabricated through a simple, environmentally-friendly freeze-drying process in which water is used as solvent. These materials exhibit mechanical properties similar to those of...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2012-11, Vol.53 (25), p.5825-5831
Main Authors: Chen, Hong-Bing, Wang, Yu-Zhong, Sánchez-Soto, Miguel, Schiraldi, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low flammability, foam-like materials based on bio-based, renewable ammonium alginate and sodium montmorillonite clay were fabricated through a simple, environmentally-friendly freeze-drying process in which water is used as solvent. These materials exhibit mechanical properties similar to those of rigid PU foams or balsa; the compressive modulus (1–97 MPa) and density (0.047–0.174 g/cm3) increase with increasing solids content, with an associated change from a layered to network microstructure structure. Calcium ions, either added directly or indirectly via CaCO3/gluconolactone (GDL) are an effective crosslinking agent for alginate, with the GDL route providing the greatest enhancement of mechanical properties. The thermal stability of the aerogels is also enhanced by the presence of crosslinking. The alginate/clay aerogels possess inherently low flammability, as measured by cone calorimetry, with heat release values decreasing as the proportion of clay in the composites is increased. [Display omitted]
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2012.10.029