Loading…

compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argenti...

Full description

Saved in:
Bibliographic Details
Published in:Environmental geochemistry and health 2014-08, Vol.36 (4), p.713-734
Main Authors: Higueras, Pablo, Oyarzun, Roberto, Kotnik, Joze, Esbrí, José María, Martínez-Coronado, Alba, Horvat, Milena, López-Berdonces, Miguel Angel, Llanos, Willians, Vaselli, Orlando, Nisi, Barbara, Mashyanov, Nikolay, Ryzov, Vladimir, Spiric, Zdravko, Panichev, Nikolay, McCrindle, Rob, Feng, Xinbin, Fu, Xuewu, Lillo, Javier, Loredo, Jorge, García, María Eugenia, Alfonso, Pura, Villegas, Karla, Palacios, Silvia, Oyarzún, Jorge, Maturana, Hugo, Contreras, Felicia, Adams, Melitón, Ribeiro-Guevara, Sergio, Niecenski, Luise Felipe, Giammanco, Salvatore, Huremović, Jasna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m⁻³, that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m⁻³) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m⁻³. We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au–Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical–chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.
ISSN:0269-4042
1573-2983
DOI:10.1007/s10653-013-9591-2