Loading…

Nonsingular isogeometric boundary element method for Stokes flows in 3D

Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering 2014-01, Vol.268, p.514-539
Main Authors: Heltai, Luca, Arroyo, Marino, DeSimone, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3
cites cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3
container_end_page 539
container_issue
container_start_page 514
container_title Computer methods in applied mechanics and engineering
container_volume 268
creator Heltai, Luca
Arroyo, Marino
DeSimone, Antonio
description Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.
doi_str_mv 10.1016/j.cma.2013.09.017
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_252166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782513002442</els_id><sourcerecordid>1531003137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1EpS5tH6A3H3tJmHHi2BYnVGhBquDQ9mx5nUnxksTFTqj69ni1SOUEWBpZM5pvNPP_jJ0j1AjYvd3VfnK1AGxqMDWgesU2qJWpBDb6NdsAtLJSWshj9ibnHZSnUWzY9Zc45zA_rKNLPOT4QHGiJQXPt3Gde5eeOY000bzwUv8Wez7ExG-X-J0yH8b4lHmYefPhlB0Nbsx09vs_YfdXH-8uP1U3X68_X76_qbxs1VJJLcxAre8FGql6GIx2nTdOK69824t2q0EZlK6DLaFT3vSCRKvFILfUGmpOGB7m-rx6m8hT8m6x0YWXZB8ClLBCCuy6wlwcmMcUf6yUFzuF7Gkc3UxxzRY7pYtwjYB_t0qJ0Aqp_mOqbBCgwUb9sXSKOSca7GMKU9HWIti9fXZni312b58FY4t9hXl3YKio-TNQstkHmj31oRy62D6Gv9C_AJxHoOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531003137</pqid></control><display><type>article</type><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><source>ScienceDirect Journals</source><creator>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</creator><creatorcontrib>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</creatorcontrib><description>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2013.09.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>65D Aproximació numèrica i geometria computacional ; Anàlisi numèrica ; Boundaries ; Boundary element method ; Integral equations ; Iron ; Isogeometric analysis ; Matemàtiques i estadística ; Mathematical analysis ; Mathematical models ; Mètodes en elements finits ; Numerical analysis ; NURBS ; Stokes flow ; Stokes flows ; Three dimensional ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-01, Vol.268, p.514-539</ispartof><rights>2013 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</citedby><cites>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Heltai, Luca</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><title>Computer methods in applied mechanics and engineering</title><description>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</description><subject>65D Aproximació numèrica i geometria computacional</subject><subject>Anàlisi numèrica</subject><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Integral equations</subject><subject>Iron</subject><subject>Isogeometric analysis</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mètodes en elements finits</subject><subject>Numerical analysis</subject><subject>NURBS</subject><subject>Stokes flow</subject><subject>Stokes flows</subject><subject>Three dimensional</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi1EpS5tH6A3H3tJmHHi2BYnVGhBquDQ9mx5nUnxksTFTqj69ni1SOUEWBpZM5pvNPP_jJ0j1AjYvd3VfnK1AGxqMDWgesU2qJWpBDb6NdsAtLJSWshj9ibnHZSnUWzY9Zc45zA_rKNLPOT4QHGiJQXPt3Gde5eeOY000bzwUv8Wez7ExG-X-J0yH8b4lHmYefPhlB0Nbsx09vs_YfdXH-8uP1U3X68_X76_qbxs1VJJLcxAre8FGql6GIx2nTdOK69824t2q0EZlK6DLaFT3vSCRKvFILfUGmpOGB7m-rx6m8hT8m6x0YWXZB8ClLBCCuy6wlwcmMcUf6yUFzuF7Gkc3UxxzRY7pYtwjYB_t0qJ0Aqp_mOqbBCgwUb9sXSKOSca7GMKU9HWIti9fXZni312b58FY4t9hXl3YKio-TNQstkHmj31oRy62D6Gv9C_AJxHoOo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Heltai, Luca</creator><creator>Arroyo, Marino</creator><creator>DeSimone, Antonio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20140101</creationdate><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><author>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>65D Aproximació numèrica i geometria computacional</topic><topic>Anàlisi numèrica</topic><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Integral equations</topic><topic>Iron</topic><topic>Isogeometric analysis</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mètodes en elements finits</topic><topic>Numerical analysis</topic><topic>NURBS</topic><topic>Stokes flow</topic><topic>Stokes flows</topic><topic>Three dimensional</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heltai, Luca</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heltai, Luca</au><au>Arroyo, Marino</au><au>DeSimone, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsingular isogeometric boundary element method for Stokes flows in 3D</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>268</volume><spage>514</spage><epage>539</epage><pages>514-539</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2013.09.017</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2014-01, Vol.268, p.514-539
issn 0045-7825
1879-2138
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_252166
source ScienceDirect Journals
subjects 65D Aproximació numèrica i geometria computacional
Anàlisi numèrica
Boundaries
Boundary element method
Integral equations
Iron
Isogeometric analysis
Matemàtiques i estadística
Mathematical analysis
Mathematical models
Mètodes en elements finits
Numerical analysis
NURBS
Stokes flow
Stokes flows
Three dimensional
Àrees temàtiques de la UPC
title Nonsingular isogeometric boundary element method for Stokes flows in 3D
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsingular%20isogeometric%20boundary%20element%20method%20for%20Stokes%20flows%20in%203D&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Heltai,%20Luca&rft.date=2014-01-01&rft.volume=268&rft.spage=514&rft.epage=539&rft.pages=514-539&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2013.09.017&rft_dat=%3Cproquest_csuc_%3E1531003137%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531003137&rft_id=info:pmid/&rfr_iscdi=true