Loading…
Nonsingular isogeometric boundary element method for Stokes flows in 3D
Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2014-01, Vol.268, p.514-539 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3 |
container_end_page | 539 |
container_issue | |
container_start_page | 514 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 268 |
creator | Heltai, Luca Arroyo, Marino DeSimone, Antonio |
description | Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM. |
doi_str_mv | 10.1016/j.cma.2013.09.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_252166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782513002442</els_id><sourcerecordid>1531003137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1EpS5tH6A3H3tJmHHi2BYnVGhBquDQ9mx5nUnxksTFTqj69ni1SOUEWBpZM5pvNPP_jJ0j1AjYvd3VfnK1AGxqMDWgesU2qJWpBDb6NdsAtLJSWshj9ibnHZSnUWzY9Zc45zA_rKNLPOT4QHGiJQXPt3Gde5eeOY000bzwUv8Wez7ExG-X-J0yH8b4lHmYefPhlB0Nbsx09vs_YfdXH-8uP1U3X68_X76_qbxs1VJJLcxAre8FGql6GIx2nTdOK69824t2q0EZlK6DLaFT3vSCRKvFILfUGmpOGB7m-rx6m8hT8m6x0YWXZB8ClLBCCuy6wlwcmMcUf6yUFzuF7Gkc3UxxzRY7pYtwjYB_t0qJ0Aqp_mOqbBCgwUb9sXSKOSca7GMKU9HWIti9fXZni312b58FY4t9hXl3YKio-TNQstkHmj31oRy62D6Gv9C_AJxHoOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531003137</pqid></control><display><type>article</type><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><source>ScienceDirect Journals</source><creator>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</creator><creatorcontrib>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</creatorcontrib><description>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2013.09.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>65D Aproximació numèrica i geometria computacional ; Anàlisi numèrica ; Boundaries ; Boundary element method ; Integral equations ; Iron ; Isogeometric analysis ; Matemàtiques i estadística ; Mathematical analysis ; Mathematical models ; Mètodes en elements finits ; Numerical analysis ; NURBS ; Stokes flow ; Stokes flows ; Three dimensional ; Àrees temàtiques de la UPC</subject><ispartof>Computer methods in applied mechanics and engineering, 2014-01, Vol.268, p.514-539</ispartof><rights>2013 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</citedby><cites>FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Heltai, Luca</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><title>Computer methods in applied mechanics and engineering</title><description>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</description><subject>65D Aproximació numèrica i geometria computacional</subject><subject>Anàlisi numèrica</subject><subject>Boundaries</subject><subject>Boundary element method</subject><subject>Integral equations</subject><subject>Iron</subject><subject>Isogeometric analysis</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mètodes en elements finits</subject><subject>Numerical analysis</subject><subject>NURBS</subject><subject>Stokes flow</subject><subject>Stokes flows</subject><subject>Three dimensional</subject><subject>Àrees temàtiques de la UPC</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu1DAQhi1EpS5tH6A3H3tJmHHi2BYnVGhBquDQ9mx5nUnxksTFTqj69ni1SOUEWBpZM5pvNPP_jJ0j1AjYvd3VfnK1AGxqMDWgesU2qJWpBDb6NdsAtLJSWshj9ibnHZSnUWzY9Zc45zA_rKNLPOT4QHGiJQXPt3Gde5eeOY000bzwUv8Wez7ExG-X-J0yH8b4lHmYefPhlB0Nbsx09vs_YfdXH-8uP1U3X68_X76_qbxs1VJJLcxAre8FGql6GIx2nTdOK69824t2q0EZlK6DLaFT3vSCRKvFILfUGmpOGB7m-rx6m8hT8m6x0YWXZB8ClLBCCuy6wlwcmMcUf6yUFzuF7Gkc3UxxzRY7pYtwjYB_t0qJ0Aqp_mOqbBCgwUb9sXSKOSca7GMKU9HWIti9fXZni312b58FY4t9hXl3YKio-TNQstkHmj31oRy62D6Gv9C_AJxHoOo</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Heltai, Luca</creator><creator>Arroyo, Marino</creator><creator>DeSimone, Antonio</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20140101</creationdate><title>Nonsingular isogeometric boundary element method for Stokes flows in 3D</title><author>Heltai, Luca ; Arroyo, Marino ; DeSimone, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>65D Aproximació numèrica i geometria computacional</topic><topic>Anàlisi numèrica</topic><topic>Boundaries</topic><topic>Boundary element method</topic><topic>Integral equations</topic><topic>Iron</topic><topic>Isogeometric analysis</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mètodes en elements finits</topic><topic>Numerical analysis</topic><topic>NURBS</topic><topic>Stokes flow</topic><topic>Stokes flows</topic><topic>Three dimensional</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heltai, Luca</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heltai, Luca</au><au>Arroyo, Marino</au><au>DeSimone, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonsingular isogeometric boundary element method for Stokes flows in 3D</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>268</volume><spage>514</spage><epage>539</epage><pages>514-539</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Isogeometric analysis (IGA) is emerging as a technology bridging computer aided geometric design (CAGD), most commonly based on Non-Uniform Rational B-Splines (NURBS) surfaces, and engineering analysis. In finite element and boundary element isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that describe the geometry define also the approximation spaces. In the FE-IGA approach, the surfaces generated by the CAGD tools need to be extended to volumetric descriptions, a major open problem in 3D. This additional passage can be avoided in principle when the partial differential equations to be solved admit a formulation in terms of boundary integral equations, leading to boundary element isogeometric analysis (IGA-BEM). The main advantages of such an approach are given by the dimensionality reduction of the problem (from volumetric-based to surface-based), by the fact that the interface with CAGD tools is direct, and by the possibility to treat exterior problems, where the computational domain is infinite. By contrast, these methods produce system matrices which are full, and require the integration of singular kernels. In this paper we address the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows, whose convergence is carefully tested numerically. Standard Gaussian quadrature rules suffice to integrate the boundary integral equations, and carefully chosen known exact solutions of the interior Stokes problem are used to correct the resulting matrices, extending the work by Klaseboer et al. (2012) [27] to IGA-BEM.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2013.09.017</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2014-01, Vol.268, p.514-539 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_252166 |
source | ScienceDirect Journals |
subjects | 65D Aproximació numèrica i geometria computacional Anàlisi numèrica Boundaries Boundary element method Integral equations Iron Isogeometric analysis Matemàtiques i estadística Mathematical analysis Mathematical models Mètodes en elements finits Numerical analysis NURBS Stokes flow Stokes flows Three dimensional Àrees temàtiques de la UPC |
title | Nonsingular isogeometric boundary element method for Stokes flows in 3D |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonsingular%20isogeometric%20boundary%20element%20method%20for%20Stokes%20flows%20in%203D&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Heltai,%20Luca&rft.date=2014-01-01&rft.volume=268&rft.spage=514&rft.epage=539&rft.pages=514-539&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2013.09.017&rft_dat=%3Cproquest_csuc_%3E1531003137%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c547t-5829fe4cd21957d0f98a6c9a87c7c4d24b807915a60be1a7c9d2e2482f5be49e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1531003137&rft_id=info:pmid/&rfr_iscdi=true |