Loading…
An empirical comparison of machine learning techniques for dam behaviour modelling
•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression...
Saved in:
Published in: | Structural safety 2015-09, Vol.56, p.9-17 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093 |
---|---|
cites | cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093 |
container_end_page | 17 |
container_issue | |
container_start_page | 9 |
container_title | Structural safety |
container_volume | 56 |
creator | Salazar, F. Toledo, M.A. Oñate, E. Morán, R. |
description | •Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees.
Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set. |
doi_str_mv | 10.1016/j.strusafe.2015.05.001 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_252685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167473015000405</els_id><sourcerecordid>1722178047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</originalsourceid><addsrcrecordid>eNqNUV2LFDEQDKLguvoXJI--zNpJJpPMm8fhFxwcHPocMj0dN8vMZE1mDvz3ZtkTHxW6aRqqmqouxt4KOAgQ3fvToax5Kz7QQYLQB6gF4hnbCWv6Rimtn7NdBZqmNQpeslelnABAW2l37OFm4TSfY47oJ45pPvscS1p4Cnz2eIwL8Yl8XuLyg6-ExyX-3KjwkDIf_cwHOvrHmLbM5zTSNFXYa_Yi-KnQm6e5Z98_ffx2-6W5u__89fbmrsG2s2tjDGgveyAZBvA4St0rFN56awzi0AcFdlQtjF3AbhTYei3kIGXXiiAG6NWeietdLBu6TEgZ_eqSj3-XS0sw0kktO6sr592Vc87p4mN1cyxYdfuF0lacMFq11lhQ_wGVUlRkfeqedU9KciolU3DnHGeffzkB7pKRO7k_GblLRg5qgajED1ci1T89RsquYKQFaYzVwurGFP914jfyVZ4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722178047</pqid></control><display><type>article</type><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><source>ScienceDirect Freedom Collection</source><creator>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</creator><creatorcontrib>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</creatorcontrib><description>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees.
Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</description><identifier>ISSN: 0167-4730</identifier><identifier>EISSN: 1879-3355</identifier><identifier>DOI: 10.1016/j.strusafe.2015.05.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Aprenentatge automàtic ; Assessments ; Boosted regression trees ; Dam monitoring ; Dam safety ; Embassaments i preses ; Enginyeria civil ; Enginyeria hidràulica, marítima i sanitària ; Informàtica ; Intel·ligència artificial ; Leakage flow ; Machine learning ; MARS ; Mathematical models ; Mesures de seguretat ; Neural networks ; Neural networks (Computer science) ; Preses (Enginyeria) ; Random forests ; Safety ; Statistical analysis ; Support vector machines ; Àrees temàtiques de la UPC</subject><ispartof>Structural safety, 2015-09, Vol.56, p.9-17</ispartof><rights>2015 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</citedby><cites>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids></links><search><creatorcontrib>Salazar, F.</creatorcontrib><creatorcontrib>Toledo, M.A.</creatorcontrib><creatorcontrib>Oñate, E.</creatorcontrib><creatorcontrib>Morán, R.</creatorcontrib><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><title>Structural safety</title><description>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees.
Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</description><subject>Algorithms</subject><subject>Aprenentatge automàtic</subject><subject>Assessments</subject><subject>Boosted regression trees</subject><subject>Dam monitoring</subject><subject>Dam safety</subject><subject>Embassaments i preses</subject><subject>Enginyeria civil</subject><subject>Enginyeria hidràulica, marítima i sanitària</subject><subject>Informàtica</subject><subject>Intel·ligència artificial</subject><subject>Leakage flow</subject><subject>Machine learning</subject><subject>MARS</subject><subject>Mathematical models</subject><subject>Mesures de seguretat</subject><subject>Neural networks</subject><subject>Neural networks (Computer science)</subject><subject>Preses (Enginyeria)</subject><subject>Random forests</subject><subject>Safety</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Àrees temàtiques de la UPC</subject><issn>0167-4730</issn><issn>1879-3355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUV2LFDEQDKLguvoXJI--zNpJJpPMm8fhFxwcHPocMj0dN8vMZE1mDvz3ZtkTHxW6aRqqmqouxt4KOAgQ3fvToax5Kz7QQYLQB6gF4hnbCWv6Rimtn7NdBZqmNQpeslelnABAW2l37OFm4TSfY47oJ45pPvscS1p4Cnz2eIwL8Yl8XuLyg6-ExyX-3KjwkDIf_cwHOvrHmLbM5zTSNFXYa_Yi-KnQm6e5Z98_ffx2-6W5u__89fbmrsG2s2tjDGgveyAZBvA4St0rFN56awzi0AcFdlQtjF3AbhTYei3kIGXXiiAG6NWeietdLBu6TEgZ_eqSj3-XS0sw0kktO6sr592Vc87p4mN1cyxYdfuF0lacMFq11lhQ_wGVUlRkfeqedU9KciolU3DnHGeffzkB7pKRO7k_GblLRg5qgajED1ci1T89RsquYKQFaYzVwurGFP914jfyVZ4s</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Salazar, F.</creator><creator>Toledo, M.A.</creator><creator>Oñate, E.</creator><creator>Morán, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>XX2</scope></search><sort><creationdate>20150901</creationdate><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><author>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aprenentatge automàtic</topic><topic>Assessments</topic><topic>Boosted regression trees</topic><topic>Dam monitoring</topic><topic>Dam safety</topic><topic>Embassaments i preses</topic><topic>Enginyeria civil</topic><topic>Enginyeria hidràulica, marítima i sanitària</topic><topic>Informàtica</topic><topic>Intel·ligència artificial</topic><topic>Leakage flow</topic><topic>Machine learning</topic><topic>MARS</topic><topic>Mathematical models</topic><topic>Mesures de seguretat</topic><topic>Neural networks</topic><topic>Neural networks (Computer science)</topic><topic>Preses (Enginyeria)</topic><topic>Random forests</topic><topic>Safety</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, F.</creatorcontrib><creatorcontrib>Toledo, M.A.</creatorcontrib><creatorcontrib>Oñate, E.</creatorcontrib><creatorcontrib>Morán, R.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>Structural safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, F.</au><au>Toledo, M.A.</au><au>Oñate, E.</au><au>Morán, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical comparison of machine learning techniques for dam behaviour modelling</atitle><jtitle>Structural safety</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>56</volume><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>0167-4730</issn><eissn>1879-3355</eissn><abstract>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees.
Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.strusafe.2015.05.001</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4730 |
ispartof | Structural safety, 2015-09, Vol.56, p.9-17 |
issn | 0167-4730 1879-3355 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_252685 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Aprenentatge automàtic Assessments Boosted regression trees Dam monitoring Dam safety Embassaments i preses Enginyeria civil Enginyeria hidràulica, marítima i sanitària Informàtica Intel·ligència artificial Leakage flow Machine learning MARS Mathematical models Mesures de seguretat Neural networks Neural networks (Computer science) Preses (Enginyeria) Random forests Safety Statistical analysis Support vector machines Àrees temàtiques de la UPC |
title | An empirical comparison of machine learning techniques for dam behaviour modelling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20comparison%20of%20machine%20learning%20techniques%20for%20dam%20behaviour%20modelling&rft.jtitle=Structural%20safety&rft.au=Salazar,%20F.&rft.date=2015-09-01&rft.volume=56&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=0167-4730&rft.eissn=1879-3355&rft_id=info:doi/10.1016/j.strusafe.2015.05.001&rft_dat=%3Cproquest_csuc_%3E1722178047%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722178047&rft_id=info:pmid/&rfr_iscdi=true |