Loading…

An empirical comparison of machine learning techniques for dam behaviour modelling

•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression...

Full description

Saved in:
Bibliographic Details
Published in:Structural safety 2015-09, Vol.56, p.9-17
Main Authors: Salazar, F., Toledo, M.A., Oñate, E., Morán, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093
cites cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093
container_end_page 17
container_issue
container_start_page 9
container_title Structural safety
container_volume 56
creator Salazar, F.
Toledo, M.A.
Oñate, E.
Morán, R.
description •Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees. Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.
doi_str_mv 10.1016/j.strusafe.2015.05.001
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_252685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167473015000405</els_id><sourcerecordid>1722178047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</originalsourceid><addsrcrecordid>eNqNUV2LFDEQDKLguvoXJI--zNpJJpPMm8fhFxwcHPocMj0dN8vMZE1mDvz3ZtkTHxW6aRqqmqouxt4KOAgQ3fvToax5Kz7QQYLQB6gF4hnbCWv6Rimtn7NdBZqmNQpeslelnABAW2l37OFm4TSfY47oJ45pPvscS1p4Cnz2eIwL8Yl8XuLyg6-ExyX-3KjwkDIf_cwHOvrHmLbM5zTSNFXYa_Yi-KnQm6e5Z98_ffx2-6W5u__89fbmrsG2s2tjDGgveyAZBvA4St0rFN56awzi0AcFdlQtjF3AbhTYei3kIGXXiiAG6NWeietdLBu6TEgZ_eqSj3-XS0sw0kktO6sr592Vc87p4mN1cyxYdfuF0lacMFq11lhQ_wGVUlRkfeqedU9KciolU3DnHGeffzkB7pKRO7k_GblLRg5qgajED1ci1T89RsquYKQFaYzVwurGFP914jfyVZ4s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1722178047</pqid></control><display><type>article</type><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><source>ScienceDirect Freedom Collection</source><creator>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</creator><creatorcontrib>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</creatorcontrib><description>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees. Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</description><identifier>ISSN: 0167-4730</identifier><identifier>EISSN: 1879-3355</identifier><identifier>DOI: 10.1016/j.strusafe.2015.05.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Aprenentatge automàtic ; Assessments ; Boosted regression trees ; Dam monitoring ; Dam safety ; Embassaments i preses ; Enginyeria civil ; Enginyeria hidràulica, marítima i sanitària ; Informàtica ; Intel·ligència artificial ; Leakage flow ; Machine learning ; MARS ; Mathematical models ; Mesures de seguretat ; Neural networks ; Neural networks (Computer science) ; Preses (Enginyeria) ; Random forests ; Safety ; Statistical analysis ; Support vector machines ; Àrees temàtiques de la UPC</subject><ispartof>Structural safety, 2015-09, Vol.56, p.9-17</ispartof><rights>2015 Elsevier Ltd</rights><rights>info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</citedby><cites>FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids></links><search><creatorcontrib>Salazar, F.</creatorcontrib><creatorcontrib>Toledo, M.A.</creatorcontrib><creatorcontrib>Oñate, E.</creatorcontrib><creatorcontrib>Morán, R.</creatorcontrib><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><title>Structural safety</title><description>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees. Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</description><subject>Algorithms</subject><subject>Aprenentatge automàtic</subject><subject>Assessments</subject><subject>Boosted regression trees</subject><subject>Dam monitoring</subject><subject>Dam safety</subject><subject>Embassaments i preses</subject><subject>Enginyeria civil</subject><subject>Enginyeria hidràulica, marítima i sanitària</subject><subject>Informàtica</subject><subject>Intel·ligència artificial</subject><subject>Leakage flow</subject><subject>Machine learning</subject><subject>MARS</subject><subject>Mathematical models</subject><subject>Mesures de seguretat</subject><subject>Neural networks</subject><subject>Neural networks (Computer science)</subject><subject>Preses (Enginyeria)</subject><subject>Random forests</subject><subject>Safety</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Àrees temàtiques de la UPC</subject><issn>0167-4730</issn><issn>1879-3355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNUV2LFDEQDKLguvoXJI--zNpJJpPMm8fhFxwcHPocMj0dN8vMZE1mDvz3ZtkTHxW6aRqqmqouxt4KOAgQ3fvToax5Kz7QQYLQB6gF4hnbCWv6Rimtn7NdBZqmNQpeslelnABAW2l37OFm4TSfY47oJ45pPvscS1p4Cnz2eIwL8Yl8XuLyg6-ExyX-3KjwkDIf_cwHOvrHmLbM5zTSNFXYa_Yi-KnQm6e5Z98_ffx2-6W5u__89fbmrsG2s2tjDGgveyAZBvA4St0rFN56awzi0AcFdlQtjF3AbhTYei3kIGXXiiAG6NWeietdLBu6TEgZ_eqSj3-XS0sw0kktO6sr592Vc87p4mN1cyxYdfuF0lacMFq11lhQ_wGVUlRkfeqedU9KciolU3DnHGeffzkB7pKRO7k_GblLRg5qgajED1ci1T89RsquYKQFaYzVwurGFP914jfyVZ4s</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Salazar, F.</creator><creator>Toledo, M.A.</creator><creator>Oñate, E.</creator><creator>Morán, R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>XX2</scope></search><sort><creationdate>20150901</creationdate><title>An empirical comparison of machine learning techniques for dam behaviour modelling</title><author>Salazar, F. ; Toledo, M.A. ; Oñate, E. ; Morán, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aprenentatge automàtic</topic><topic>Assessments</topic><topic>Boosted regression trees</topic><topic>Dam monitoring</topic><topic>Dam safety</topic><topic>Embassaments i preses</topic><topic>Enginyeria civil</topic><topic>Enginyeria hidràulica, marítima i sanitària</topic><topic>Informàtica</topic><topic>Intel·ligència artificial</topic><topic>Leakage flow</topic><topic>Machine learning</topic><topic>MARS</topic><topic>Mathematical models</topic><topic>Mesures de seguretat</topic><topic>Neural networks</topic><topic>Neural networks (Computer science)</topic><topic>Preses (Enginyeria)</topic><topic>Random forests</topic><topic>Safety</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, F.</creatorcontrib><creatorcontrib>Toledo, M.A.</creatorcontrib><creatorcontrib>Oñate, E.</creatorcontrib><creatorcontrib>Morán, R.</creatorcontrib><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Recercat</collection><jtitle>Structural safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, F.</au><au>Toledo, M.A.</au><au>Oñate, E.</au><au>Morán, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An empirical comparison of machine learning techniques for dam behaviour modelling</atitle><jtitle>Structural safety</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>56</volume><spage>9</spage><epage>17</epage><pages>9-17</pages><issn>0167-4730</issn><eissn>1879-3355</eissn><abstract>•Predictive models for displacements and leakage in an arch dam were built.•The prediction accuracy of five machine learning tools was compared with HST method.•A sensitivity analysis to the training set size was performed.•Machine learning tools mostly outperform HST, especially boosted regression trees. Predictive models are essential in dam safety assessment. Both deterministic and statistical models applied in the day-to-day practice have demonstrated to be useful, although they show relevant limitations at the same time. On another note, powerful learning algorithms have been developed in the field of machine learning (ML), which have been applied to solve practical problems. The work aims at testing the prediction capability of some state-of-the-art algorithms to model dam behaviour, in terms of displacements and leakage. Models based on random forests (RF), boosted regression trees (BRT), neural networks (NN), support vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to predict 14 target variables. Prediction accuracy is compared with the conventional statistical model, which shows poorer performance on average. BRT models stand out as the most accurate overall, followed by NN and RF. It was also verified that the model fit can be improved by removing the records of the first years of dam functioning from the training set.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.strusafe.2015.05.001</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4730
ispartof Structural safety, 2015-09, Vol.56, p.9-17
issn 0167-4730
1879-3355
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_252685
source ScienceDirect Freedom Collection
subjects Algorithms
Aprenentatge automàtic
Assessments
Boosted regression trees
Dam monitoring
Dam safety
Embassaments i preses
Enginyeria civil
Enginyeria hidràulica, marítima i sanitària
Informàtica
Intel·ligència artificial
Leakage flow
Machine learning
MARS
Mathematical models
Mesures de seguretat
Neural networks
Neural networks (Computer science)
Preses (Enginyeria)
Random forests
Safety
Statistical analysis
Support vector machines
Àrees temàtiques de la UPC
title An empirical comparison of machine learning techniques for dam behaviour modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20empirical%20comparison%20of%20machine%20learning%20techniques%20for%20dam%20behaviour%20modelling&rft.jtitle=Structural%20safety&rft.au=Salazar,%20F.&rft.date=2015-09-01&rft.volume=56&rft.spage=9&rft.epage=17&rft.pages=9-17&rft.issn=0167-4730&rft.eissn=1879-3355&rft_id=info:doi/10.1016/j.strusafe.2015.05.001&rft_dat=%3Cproquest_csuc_%3E1722178047%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-7705a290e2fb0acd2593c1a8a877ccb9f308d340d6fc6d1c4a512b22641f1b093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1722178047&rft_id=info:pmid/&rfr_iscdi=true