Loading…
Semi-purity of tempered Deligne cohomology
In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the fo...
Saved in:
Published in: | Collectanea mathematica (Barcelona) 2008 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Collectanea mathematica (Barcelona) |
container_volume | |
creator | Burgos Gil, José I |
description | In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties. |
format | article |
fullrecord | <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_262717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_262717</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_2627173</originalsourceid><addsrcrecordid>eNpjYeA0MDA00DUwNzXnYOAqLs4yMDAxMjQ052TQCk7NzdQtKC3KLKlUyE9TKEnNLUgtSk1RcEnNyUzPS1VIzs_Iz83PyU-v5GFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFG5kZmRuaG5OjBwDzszrx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semi-purity of tempered Deligne cohomology</title><source>Springer Nature</source><creator>Burgos Gil, José I</creator><creatorcontrib>Burgos Gil, José I</creatorcontrib><description>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</description><identifier>ISSN: 0010-0757</identifier><language>eng</language><publisher>Universitat de Barcelona</publisher><subject>Algebraic geometry ; Geometria algebraica</subject><ispartof>Collectanea mathematica (Barcelona), 2008</ispartof><rights>(c) Universitat de Barcelona, 2008 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Burgos Gil, José I</creatorcontrib><title>Semi-purity of tempered Deligne cohomology</title><title>Collectanea mathematica (Barcelona)</title><description>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</description><subject>Algebraic geometry</subject><subject>Geometria algebraica</subject><issn>0010-0757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDA00DUwNzXnYOAqLs4yMDAxMjQ052TQCk7NzdQtKC3KLKlUyE9TKEnNLUgtSk1RcEnNyUzPS1VIzs_Iz83PyU-v5GFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFG5kZmRuaG5OjBwDzszrx</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Burgos Gil, José I</creator><general>Universitat de Barcelona</general><scope>XX2</scope></search><sort><creationdate>2008</creationdate><title>Semi-purity of tempered Deligne cohomology</title><author>Burgos Gil, José I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_2627173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebraic geometry</topic><topic>Geometria algebraica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgos Gil, José I</creatorcontrib><collection>Recercat</collection><jtitle>Collectanea mathematica (Barcelona)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgos Gil, José I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-purity of tempered Deligne cohomology</atitle><jtitle>Collectanea mathematica (Barcelona)</jtitle><date>2008</date><risdate>2008</risdate><issn>0010-0757</issn><abstract>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</abstract><pub>Universitat de Barcelona</pub><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-0757 |
ispartof | Collectanea mathematica (Barcelona), 2008 |
issn | 0010-0757 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_262717 |
source | Springer Nature |
subjects | Algebraic geometry Geometria algebraica |
title | Semi-purity of tempered Deligne cohomology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-purity%20of%20tempered%20Deligne%20cohomology&rft.jtitle=Collectanea%20mathematica%20(Barcelona)&rft.au=Burgos%20Gil,%20Jos%C3%A9%20I&rft.date=2008&rft.issn=0010-0757&rft_id=info:doi/&rft_dat=%3Ccsuc%3Eoai_recercat_cat_2072_262717%3C/csuc%3E%3Cgrp_id%3Ecdi_FETCH-csuc_recercat_oai_recercat_cat_2072_2627173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |