Loading…

Semi-purity of tempered Deligne cohomology

In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the fo...

Full description

Saved in:
Bibliographic Details
Published in:Collectanea mathematica (Barcelona) 2008
Main Author: Burgos Gil, José I
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title Collectanea mathematica (Barcelona)
container_volume
creator Burgos Gil, José I
description In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.
format article
fullrecord <record><control><sourceid>csuc</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_262717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_recercat_cat_2072_262717</sourcerecordid><originalsourceid>FETCH-csuc_recercat_oai_recercat_cat_2072_2627173</originalsourceid><addsrcrecordid>eNpjYeA0MDA00DUwNzXnYOAqLs4yMDAxMjQ052TQCk7NzdQtKC3KLKlUyE9TKEnNLUgtSk1RcEnNyUzPS1VIzs_Iz83PyU-v5GFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFG5kZmRuaG5OjBwDzszrx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Semi-purity of tempered Deligne cohomology</title><source>Springer Nature</source><creator>Burgos Gil, José I</creator><creatorcontrib>Burgos Gil, José I</creatorcontrib><description>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</description><identifier>ISSN: 0010-0757</identifier><language>eng</language><publisher>Universitat de Barcelona</publisher><subject>Algebraic geometry ; Geometria algebraica</subject><ispartof>Collectanea mathematica (Barcelona), 2008</ispartof><rights>(c) Universitat de Barcelona, 2008 info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids></links><search><creatorcontrib>Burgos Gil, José I</creatorcontrib><title>Semi-purity of tempered Deligne cohomology</title><title>Collectanea mathematica (Barcelona)</title><description>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</description><subject>Algebraic geometry</subject><subject>Geometria algebraica</subject><issn>0010-0757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0MDA00DUwNzXnYOAqLs4yMDAxMjQ052TQCk7NzdQtKC3KLKlUyE9TKEnNLUgtSk1RcEnNyUzPS1VIzs_Iz83PyU-v5GFgTUvMKU7lhdLcDIZuriHOHrrJxaXJ8UWpyalFyYkl8fmJmQgOCBsZmBvFG5kZmRuaG5OjBwDzszrx</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Burgos Gil, José I</creator><general>Universitat de Barcelona</general><scope>XX2</scope></search><sort><creationdate>2008</creationdate><title>Semi-purity of tempered Deligne cohomology</title><author>Burgos Gil, José I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-csuc_recercat_oai_recercat_cat_2072_2627173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebraic geometry</topic><topic>Geometria algebraica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgos Gil, José I</creatorcontrib><collection>Recercat</collection><jtitle>Collectanea mathematica (Barcelona)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgos Gil, José I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-purity of tempered Deligne cohomology</atitle><jtitle>Collectanea mathematica (Barcelona)</jtitle><date>2008</date><risdate>2008</risdate><issn>0010-0757</issn><abstract>In this paper we define the formal and tempered Deligne cohomology groups, that are obtained by applying the Deligne complex functor to the complexes of formal differential forms and tempered currents respectively. We then prove the existence of a duality between them, a vanishing theorem for the former and a semipurity property for the latter. The motivation of these results comes from the study of covariant arithmetic Chow groups. The semipurity property of tempered Deligne cohomology implies, in particular, that several definitions of covariant arithmetic Chow groups agree for projective arithmetic varieties.</abstract><pub>Universitat de Barcelona</pub><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-0757
ispartof Collectanea mathematica (Barcelona), 2008
issn 0010-0757
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_262717
source Springer Nature
subjects Algebraic geometry
Geometria algebraica
title Semi-purity of tempered Deligne cohomology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-purity%20of%20tempered%20Deligne%20cohomology&rft.jtitle=Collectanea%20mathematica%20(Barcelona)&rft.au=Burgos%20Gil,%20Jos%C3%A9%20I&rft.date=2008&rft.issn=0010-0757&rft_id=info:doi/&rft_dat=%3Ccsuc%3Eoai_recercat_cat_2072_262717%3C/csuc%3E%3Cgrp_id%3Ecdi_FETCH-csuc_recercat_oai_recercat_cat_2072_2627173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true