Loading…
A visual embedding for the unsupervised extraction of abstract semantics
Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large...
Saved in:
Published in: | Cognitive systems research 2017-05, Vol.42, p.73-81 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93 |
container_end_page | 81 |
container_issue | |
container_start_page | 73 |
container_title | Cognitive systems research |
container_volume | 42 |
creator | Garcia-Gasulla, D. Ayguadé, E. Labarta, J. Béjar, J. Cortés, U. Suzumura, T. Chen, R. |
description | Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used. |
doi_str_mv | 10.1016/j.cogsys.2016.11.008 |
format | article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_272414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389041716300444</els_id><sourcerecordid>oai_recercat_cat_2072_272414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcPAPJHidxEkuSFUFFKkSFzhbfqyLqzap7KSif49LK8GJwz5GuzOrHULugeXAQDysc9Ov4iHmPKEcIGesuSATKJo2YyXUl3_6a3IT45qlxbbiE7KY0b2Po9pQ3Gq01ncr6vpAh0-kYxfHHYY0R0vxawjKDL7vaO-o0vEH0ohb1Q3exFty5dQm4t25TsnH89P7fJEt315e57NlZoq2HDJgzrYO0GCrmrrR4GoBgjPBrW7qShS2YqwUla605kY3wnIUwrW6cSmbtpgSOOmaOBoZklAwapC98r_gGJzVXPKal1AmTnnmhD7GgE7ugt-qcJDA5NFBuZYnB-XRQQkgk4OJ9niiYfpn7zHIaDx2Bq1PpwZpe_-_wDeU73zL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A visual embedding for the unsupervised extraction of abstract semantics</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Garcia-Gasulla, D. ; Ayguadé, E. ; Labarta, J. ; Béjar, J. ; Cortés, U. ; Suzumura, T. ; Chen, R.</creator><creatorcontrib>Garcia-Gasulla, D. ; Ayguadé, E. ; Labarta, J. ; Béjar, J. ; Cortés, U. ; Suzumura, T. ; Chen, R.</creatorcontrib><description>Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.</description><identifier>ISSN: 1389-0417</identifier><identifier>EISSN: 1389-0417</identifier><identifier>DOI: 10.1016/j.cogsys.2016.11.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aprenentatge cognitiu ; Artificial image cognition ; Cognitive learning ; Deep learning embeddings ; Ensenyament i aprenentatge ; Metodologies docents ; Visual reasoning ; Àrees temàtiques de la UPC</subject><ispartof>Cognitive systems research, 2017-05, Vol.42, p.73-81</ispartof><rights>2016 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93</citedby><cites>FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Garcia-Gasulla, D.</creatorcontrib><creatorcontrib>Ayguadé, E.</creatorcontrib><creatorcontrib>Labarta, J.</creatorcontrib><creatorcontrib>Béjar, J.</creatorcontrib><creatorcontrib>Cortés, U.</creatorcontrib><creatorcontrib>Suzumura, T.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><title>A visual embedding for the unsupervised extraction of abstract semantics</title><title>Cognitive systems research</title><description>Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.</description><subject>Aprenentatge cognitiu</subject><subject>Artificial image cognition</subject><subject>Cognitive learning</subject><subject>Deep learning embeddings</subject><subject>Ensenyament i aprenentatge</subject><subject>Metodologies docents</subject><subject>Visual reasoning</subject><subject>Àrees temàtiques de la UPC</subject><issn>1389-0417</issn><issn>1389-0417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcPAPJHidxEkuSFUFFKkSFzhbfqyLqzap7KSif49LK8GJwz5GuzOrHULugeXAQDysc9Ov4iHmPKEcIGesuSATKJo2YyXUl3_6a3IT45qlxbbiE7KY0b2Po9pQ3Gq01ncr6vpAh0-kYxfHHYY0R0vxawjKDL7vaO-o0vEH0ohb1Q3exFty5dQm4t25TsnH89P7fJEt315e57NlZoq2HDJgzrYO0GCrmrrR4GoBgjPBrW7qShS2YqwUla605kY3wnIUwrW6cSmbtpgSOOmaOBoZklAwapC98r_gGJzVXPKal1AmTnnmhD7GgE7ugt-qcJDA5NFBuZYnB-XRQQkgk4OJ9niiYfpn7zHIaDx2Bq1PpwZpe_-_wDeU73zL</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Garcia-Gasulla, D.</creator><creator>Ayguadé, E.</creator><creator>Labarta, J.</creator><creator>Béjar, J.</creator><creator>Cortés, U.</creator><creator>Suzumura, T.</creator><creator>Chen, R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>201705</creationdate><title>A visual embedding for the unsupervised extraction of abstract semantics</title><author>Garcia-Gasulla, D. ; Ayguadé, E. ; Labarta, J. ; Béjar, J. ; Cortés, U. ; Suzumura, T. ; Chen, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aprenentatge cognitiu</topic><topic>Artificial image cognition</topic><topic>Cognitive learning</topic><topic>Deep learning embeddings</topic><topic>Ensenyament i aprenentatge</topic><topic>Metodologies docents</topic><topic>Visual reasoning</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Gasulla, D.</creatorcontrib><creatorcontrib>Ayguadé, E.</creatorcontrib><creatorcontrib>Labarta, J.</creatorcontrib><creatorcontrib>Béjar, J.</creatorcontrib><creatorcontrib>Cortés, U.</creatorcontrib><creatorcontrib>Suzumura, T.</creatorcontrib><creatorcontrib>Chen, R.</creatorcontrib><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Cognitive systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Gasulla, D.</au><au>Ayguadé, E.</au><au>Labarta, J.</au><au>Béjar, J.</au><au>Cortés, U.</au><au>Suzumura, T.</au><au>Chen, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A visual embedding for the unsupervised extraction of abstract semantics</atitle><jtitle>Cognitive systems research</jtitle><date>2017-05</date><risdate>2017</risdate><volume>42</volume><spage>73</spage><epage>81</epage><pages>73-81</pages><issn>1389-0417</issn><eissn>1389-0417</eissn><abstract>Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cogsys.2016.11.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-0417 |
ispartof | Cognitive systems research, 2017-05, Vol.42, p.73-81 |
issn | 1389-0417 1389-0417 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_272414 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Aprenentatge cognitiu Artificial image cognition Cognitive learning Deep learning embeddings Ensenyament i aprenentatge Metodologies docents Visual reasoning Àrees temàtiques de la UPC |
title | A visual embedding for the unsupervised extraction of abstract semantics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20visual%20embedding%20for%20the%20unsupervised%20extraction%20of%20abstract%20semantics&rft.jtitle=Cognitive%20systems%20research&rft.au=Garcia-Gasulla,%20D.&rft.date=2017-05&rft.volume=42&rft.spage=73&rft.epage=81&rft.pages=73-81&rft.issn=1389-0417&rft.eissn=1389-0417&rft_id=info:doi/10.1016/j.cogsys.2016.11.008&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_272414%3C/csuc_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-10fd9f1ece9a878b1f76162062db87563d500465b5bb2cb86d2e66f9b8f6f9c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |