Loading…
Modelling indoor air carbon dioxide concentration using grey-box models
Predictive control is the strategy that has the greatest reported benefits when it is implemented in a building energy management system. Predictive control requires low-order models to assess different scenarios and determine which strategy should be implemented to achieve a good compromise between...
Saved in:
Published in: | Building and environment 2017-05, Vol.117, p.146-153 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Predictive control is the strategy that has the greatest reported benefits when it is implemented in a building energy management system. Predictive control requires low-order models to assess different scenarios and determine which strategy should be implemented to achieve a good compromise between comfort, energy consumption and energy cost. Usually, a deterministic approach is used to create low-order models to estimate the indoor CO2 concentration using the differential equation of the tracer-gas mass balance. However, the use of stochastic differential equations based on the tracer-gas mass balance is not common. The objective of this paper is to assess the potential of creating predictive models for a specific room using for the first time a stochastic grey-box modelling approach to estimate future CO2 concentrations. First of all, a set of stochastic differential equations are defined. Then, the model parameters are estimated using a maximum likelihood method. Different models are defined, and tested using a set of statistical methods. The approach used combines physical knowledge and information embedded in the monitored data to identify a suitable parametrization for a simple model that is more accurate than commonly used deterministic approaches. As a consequence, predictive control can be easily implemented in energy management systems.
•Grey-box modelling is used to model the indoor CO2 concentration.•Stochastic approach enables to identify suitable parametrization.•The proposed approach was found more accurate than currently used deterministic approaches.•The optimal RC-network to model indoor CO2 concentration in a room is identified. |
---|---|
ISSN: | 0360-1323 1873-684X |
DOI: | 10.1016/j.buildenv.2017.02.022 |