Loading…

Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment

Summary The parametric analysis of electric grids requires carrying out a large number of power flow computations. The different parameters describe loading conditions and grid properties. In this framework, the proper generalized decomposition (PGD) provides a numerical solution explicitly accounti...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2017-08, Vol.111 (6), p.529-552
Main Authors: García‐Blanco, R., Borzacchiello, D., Chinesta, F., Diez, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133
cites cdi_FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133
container_end_page 552
container_issue 6
container_start_page 529
container_title International journal for numerical methods in engineering
container_volume 111
creator García‐Blanco, R.
Borzacchiello, D.
Chinesta, F.
Diez, P.
description Summary The parametric analysis of electric grids requires carrying out a large number of power flow computations. The different parameters describe loading conditions and grid properties. In this framework, the proper generalized decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to (1) iterating algebraic solver, (2) number of terms in the separable greedy expansion, and (3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal‐oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end‐user. The paper discusses how to compute the goal‐oriented error estimates. This requires linearizing the error equation and the quantity of interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.5470
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_292044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917824451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133</originalsourceid><addsrcrecordid>eNp1kEFOwzAURC0EEqUgcQRLbNik-Dt2Ey9RKQWpBRawNq7jlFRJHOyUqDuOwBk5CQ6txIqFZXn8ZvT_IHQOZASE0Ku6MiPOEnKABkBEEhFKkkM0CF8i4iKFY3Ti_ZoQAE7iAXpd2LporSvqFVb4aXaDvS0_jMO5dbhRTlWmdYXGje16sbQdbpxdlqbyuCvaN7yyqvz-_AoJpm5Nho1zwam8N95XQTpFR7kqvTnb30P0cjt9ntxF88fZ_eR6HmlGKYk4ZZqmMKZcZBBzTYWIRayScU6Ba0UoEE5FmicsyfTSZCDoMiMqYyJniYY4HiLY5Wq_0dIZbZxWrbSq-Hv0J9RBJRWUMBY8FztPWOl9Y3wr13bj6jCmBAFJShnjEKjLfbKz3juTy8YVlXJbCUT2ncvQuew7D2i0Q7uiNNt_OfmwmP7yP-c7gtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917824451</pqid></control><display><type>article</type><title>Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>García‐Blanco, R. ; Borzacchiello, D. ; Chinesta, F. ; Diez, P.</creator><creatorcontrib>García‐Blanco, R. ; Borzacchiello, D. ; Chinesta, F. ; Diez, P.</creatorcontrib><description>Summary The parametric analysis of electric grids requires carrying out a large number of power flow computations. The different parameters describe loading conditions and grid properties. In this framework, the proper generalized decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to (1) iterating algebraic solver, (2) number of terms in the separable greedy expansion, and (3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal‐oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end‐user. The paper discusses how to compute the goal‐oriented error estimates. This requires linearizing the error equation and the quantity of interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5470</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Algebra ; Computer programs ; Distribució ; Distribució d’energia elèctrica ; Electric power distribution ; Energia elèctrica ; Enginyeria elèctrica ; Error analysis ; error assessment ; Estimates ; Matemàtiques i estadística ; Mathematical models ; Models matemàtics ; Nested loops ; Parametric analysis ; parametric power flow ; Permissible error ; Power flow ; power losses ; proper generalized decomposition ; reduced order models ; Àlgebra ; Àrees temàtiques de la UPC</subject><ispartof>International journal for numerical methods in engineering, 2017-08, Vol.111 (6), p.529-552</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133</citedby><cites>FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>García‐Blanco, R.</creatorcontrib><creatorcontrib>Borzacchiello, D.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Diez, P.</creatorcontrib><title>Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment</title><title>International journal for numerical methods in engineering</title><description>Summary The parametric analysis of electric grids requires carrying out a large number of power flow computations. The different parameters describe loading conditions and grid properties. In this framework, the proper generalized decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to (1) iterating algebraic solver, (2) number of terms in the separable greedy expansion, and (3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal‐oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end‐user. The paper discusses how to compute the goal‐oriented error estimates. This requires linearizing the error equation and the quantity of interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Algebra</subject><subject>Computer programs</subject><subject>Distribució</subject><subject>Distribució d’energia elèctrica</subject><subject>Electric power distribution</subject><subject>Energia elèctrica</subject><subject>Enginyeria elèctrica</subject><subject>Error analysis</subject><subject>error assessment</subject><subject>Estimates</subject><subject>Matemàtiques i estadística</subject><subject>Mathematical models</subject><subject>Models matemàtics</subject><subject>Nested loops</subject><subject>Parametric analysis</subject><subject>parametric power flow</subject><subject>Permissible error</subject><subject>Power flow</subject><subject>power losses</subject><subject>proper generalized decomposition</subject><subject>reduced order models</subject><subject>Àlgebra</subject><subject>Àrees temàtiques de la UPC</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAURC0EEqUgcQRLbNik-Dt2Ey9RKQWpBRawNq7jlFRJHOyUqDuOwBk5CQ6txIqFZXn8ZvT_IHQOZASE0Ku6MiPOEnKABkBEEhFKkkM0CF8i4iKFY3Ti_ZoQAE7iAXpd2LporSvqFVb4aXaDvS0_jMO5dbhRTlWmdYXGje16sbQdbpxdlqbyuCvaN7yyqvz-_AoJpm5Nho1zwam8N95XQTpFR7kqvTnb30P0cjt9ntxF88fZ_eR6HmlGKYk4ZZqmMKZcZBBzTYWIRayScU6Ba0UoEE5FmicsyfTSZCDoMiMqYyJniYY4HiLY5Wq_0dIZbZxWrbSq-Hv0J9RBJRWUMBY8FztPWOl9Y3wr13bj6jCmBAFJShnjEKjLfbKz3juTy8YVlXJbCUT2ncvQuew7D2i0Q7uiNNt_OfmwmP7yP-c7gtA</recordid><startdate>20170810</startdate><enddate>20170810</enddate><creator>García‐Blanco, R.</creator><creator>Borzacchiello, D.</creator><creator>Chinesta, F.</creator><creator>Diez, P.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley &amp; Sons</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>XX2</scope></search><sort><creationdate>20170810</creationdate><title>Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment</title><author>García‐Blanco, R. ; Borzacchiello, D. ; Chinesta, F. ; Diez, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algebra</topic><topic>Computer programs</topic><topic>Distribució</topic><topic>Distribució d’energia elèctrica</topic><topic>Electric power distribution</topic><topic>Energia elèctrica</topic><topic>Enginyeria elèctrica</topic><topic>Error analysis</topic><topic>error assessment</topic><topic>Estimates</topic><topic>Matemàtiques i estadística</topic><topic>Mathematical models</topic><topic>Models matemàtics</topic><topic>Nested loops</topic><topic>Parametric analysis</topic><topic>parametric power flow</topic><topic>Permissible error</topic><topic>Power flow</topic><topic>power losses</topic><topic>proper generalized decomposition</topic><topic>reduced order models</topic><topic>Àlgebra</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García‐Blanco, R.</creatorcontrib><creatorcontrib>Borzacchiello, D.</creatorcontrib><creatorcontrib>Chinesta, F.</creatorcontrib><creatorcontrib>Diez, P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Recercat</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García‐Blanco, R.</au><au>Borzacchiello, D.</au><au>Chinesta, F.</au><au>Diez, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2017-08-10</date><risdate>2017</risdate><volume>111</volume><issue>6</issue><spage>529</spage><epage>552</epage><pages>529-552</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary The parametric analysis of electric grids requires carrying out a large number of power flow computations. The different parameters describe loading conditions and grid properties. In this framework, the proper generalized decomposition (PGD) provides a numerical solution explicitly accounting for the parametric dependence. Once the PGD solution is available, exploring the multidimensional parametric space is computationally inexpensive. The aim of this paper is to provide tools to monitor the error associated with this significant computational gain and to guarantee the quality of the PGD solution. In this case, the PGD algorithm consists in three nested loops that correspond to (1) iterating algebraic solver, (2) number of terms in the separable greedy expansion, and (3) the alternated directions for each term. In the proposed approach, the three loops are controlled by stopping criteria based on residual goal‐oriented error estimates. This allows one for using only the computational resources necessary to achieve the accuracy prescribed by the end‐user. The paper discusses how to compute the goal‐oriented error estimates. This requires linearizing the error equation and the quantity of interest to derive an efficient error representation based on an adjoint problem. The efficiency of the proposed approach is demonstrated on benchmark problems. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5470</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2017-08, Vol.111 (6), p.529-552
issn 0029-5981
1097-0207
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_292044
source Wiley-Blackwell Read & Publish Collection
subjects Accuracy
Algebra
Computer programs
Distribució
Distribució d’energia elèctrica
Electric power distribution
Energia elèctrica
Enginyeria elèctrica
Error analysis
error assessment
Estimates
Matemàtiques i estadística
Mathematical models
Models matemàtics
Nested loops
Parametric analysis
parametric power flow
Permissible error
Power flow
power losses
proper generalized decomposition
reduced order models
Àlgebra
Àrees temàtiques de la UPC
title Monitoring a PGD solver for parametric power flow problems with goal‐oriented error assessment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20a%20PGD%20solver%20for%20parametric%20power%20flow%20problems%20with%20goal%E2%80%90oriented%20error%20assessment&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Garc%C3%ADa%E2%80%90Blanco,%20R.&rft.date=2017-08-10&rft.volume=111&rft.issue=6&rft.spage=529&rft.epage=552&rft.pages=529-552&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5470&rft_dat=%3Cproquest_csuc_%3E1917824451%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4220-524c2816259d135c299393a76f215ca02105298f747dcbed192bd0ad49f47c133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1917824451&rft_id=info:pmid/&rfr_iscdi=true