Loading…

Microcellular PP/GF composites: Morphological, mechanical and fracture characterization

The aim of the present work is to analyze the morphology, mechanical properties and fracture behaviour of solid and foamed plates made of glass fiber-reinforced PP. The morphology exhibited a solid skin/foamed core structure, dependent on the foaming ratio. Simulation of the microcellular injection...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2018-01, Vol.104, p.1-13
Main Authors: Gómez-Monterde, J., Sánchez-Soto, M., Maspoch, M. Ll
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of the present work is to analyze the morphology, mechanical properties and fracture behaviour of solid and foamed plates made of glass fiber-reinforced PP. The morphology exhibited a solid skin/foamed core structure, dependent on the foaming ratio. Simulation of the microcellular injection molding process with Moldex 3D® software provided a good approach to the experimental results. The flexural properties and impact resistance showed lower values as the apparent density decreased, but constant specific properties. The fracture characterization was carried out by determining the Crack Tip Opening Displacement (CTOD) at low strain rate, as well as the fracture toughness (KIc) at impact loading. Foamed specimens presented higher values of CTOD than the solid ones and higher as the foaming ratio increases, due to cells acting as crack arrestors by blunting the crack tip. However, the fracture toughness KIc decreased with decreasing the apparent density. Anisotropy due to fiber orientation was also observed. Fibers were aligned in the filling direction in the surface layers, while they were oriented in the transverse direction in the core. According to the amount of fibers oriented in one direction or another, different properties were obtained.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2017.10.014