Loading…

A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks

We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters 2013-06, Vol.20 (6), p.595-598
Main Authors: Pereira, S. S., Lopez-Valcarce, R., Pages-Zamora, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3
cites cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3
container_end_page 598
container_issue 6
container_start_page 595
container_title IEEE signal processing letters
container_volume 20
creator Pereira, S. S.
Lopez-Valcarce, R.
Pages-Zamora, A.
description We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.
doi_str_mv 10.1109/LSP.2013.2260329
format article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_338696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509420</ieee_id><sourcerecordid>oai_recercat_cat_2072_338696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcv-ga2TpNlsjrXWD6gfUIvHkN2daHS7K0mK-O_N0qKHYSbkeQbmJeScwoRSUJfL1fOEAeUTxgrgTB2QERWizBkv6GGaQUKuFJTH5CSEDwAoaSlG5HWWXTtrt8H1XX5lAjbZ4iGbtW-9d_F9k9neJyBE76ptHD5DdBsTE525Llt3HltnqhazFXYhsY8Yv3v_GU7JkTVtwLN9H5P1zeJlfpcvn27v57NlXnNJY14xBkiFkZLxCqGYmqlBlBU1goqKl2Blo6yVgqFilhWsoE0pqprVlFvFGz4mdLe3Dttae6zR1ybq3rj_x1AMJNOcl4UqkgN7x_cheLT6y6ej_I-moIcwdQpTD2HqfZhJudgpDhH_8EKAmjLgv6HDcEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</creator><creatorcontrib>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</creatorcontrib><description>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2013.2260329</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Consensus averaging ; Diffusion strategies ; Distributed estimation ; Enginyeria electrònica ; Expectation-maximization ; Instrumentació i mesura ; Maximum likelihood estimation ; Maximum-likelihood ; Noise measurement ; Sensor networks ; Sensors i actuadors ; Signal processing algorithms ; Signal to noise ratio ; Soft detection ; Wireless sensor networks ; Xarxes de sensors ; Àrees temàtiques de la UPC</subject><ispartof>IEEE signal processing letters, 2013-06, Vol.20 (6), p.595-598</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</citedby><cites>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pereira, S. S.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><creatorcontrib>Pages-Zamora, A.</creatorcontrib><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</description><subject>Consensus averaging</subject><subject>Diffusion strategies</subject><subject>Distributed estimation</subject><subject>Enginyeria electrònica</subject><subject>Expectation-maximization</subject><subject>Instrumentació i mesura</subject><subject>Maximum likelihood estimation</subject><subject>Maximum-likelihood</subject><subject>Noise measurement</subject><subject>Sensor networks</subject><subject>Sensors i actuadors</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Soft detection</subject><subject>Wireless sensor networks</subject><subject>Xarxes de sensors</subject><subject>Àrees temàtiques de la UPC</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcv-ga2TpNlsjrXWD6gfUIvHkN2daHS7K0mK-O_N0qKHYSbkeQbmJeScwoRSUJfL1fOEAeUTxgrgTB2QERWizBkv6GGaQUKuFJTH5CSEDwAoaSlG5HWWXTtrt8H1XX5lAjbZ4iGbtW-9d_F9k9neJyBE76ptHD5DdBsTE525Llt3HltnqhazFXYhsY8Yv3v_GU7JkTVtwLN9H5P1zeJlfpcvn27v57NlXnNJY14xBkiFkZLxCqGYmqlBlBU1goqKl2Blo6yVgqFilhWsoE0pqprVlFvFGz4mdLe3Dttae6zR1ybq3rj_x1AMJNOcl4UqkgN7x_cheLT6y6ej_I-moIcwdQpTD2HqfZhJudgpDhH_8EKAmjLgv6HDcEQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pereira, S. S.</creator><creator>Lopez-Valcarce, R.</creator><creator>Pages-Zamora, A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20130601</creationdate><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><author>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Consensus averaging</topic><topic>Diffusion strategies</topic><topic>Distributed estimation</topic><topic>Enginyeria electrònica</topic><topic>Expectation-maximization</topic><topic>Instrumentació i mesura</topic><topic>Maximum likelihood estimation</topic><topic>Maximum-likelihood</topic><topic>Noise measurement</topic><topic>Sensor networks</topic><topic>Sensors i actuadors</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Soft detection</topic><topic>Wireless sensor networks</topic><topic>Xarxes de sensors</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, S. S.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><creatorcontrib>Pages-Zamora, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, S. S.</au><au>Lopez-Valcarce, R.</au><au>Pages-Zamora, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>6</issue><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2013.2260329</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2013-06, Vol.20 (6), p.595-598
issn 1070-9908
1558-2361
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_338696
source IEEE Electronic Library (IEL) Journals
subjects Consensus averaging
Diffusion strategies
Distributed estimation
Enginyeria electrònica
Expectation-maximization
Instrumentació i mesura
Maximum likelihood estimation
Maximum-likelihood
Noise measurement
Sensor networks
Sensors i actuadors
Signal processing algorithms
Signal to noise ratio
Soft detection
Wireless sensor networks
Xarxes de sensors
Àrees temàtiques de la UPC
title A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Diffusion-Based%20EM%20Algorithm%20for%20Distributed%20Estimation%20in%20Unreliable%20Sensor%20Networks&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pereira,%20S.%20S.&rft.date=2013-06-01&rft.volume=20&rft.issue=6&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2013.2260329&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_338696%3C/csuc_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6509420&rfr_iscdi=true