Loading…
A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks
We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an e...
Saved in:
Published in: | IEEE signal processing letters 2013-06, Vol.20 (6), p.595-598 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3 |
container_end_page | 598 |
container_issue | 6 |
container_start_page | 595 |
container_title | IEEE signal processing letters |
container_volume | 20 |
creator | Pereira, S. S. Lopez-Valcarce, R. Pages-Zamora, A. |
description | We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches. |
doi_str_mv | 10.1109/LSP.2013.2260329 |
format | article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_338696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6509420</ieee_id><sourcerecordid>oai_recercat_cat_2072_338696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKt3wcv-ga2TpNlsjrXWD6gfUIvHkN2daHS7K0mK-O_N0qKHYSbkeQbmJeScwoRSUJfL1fOEAeUTxgrgTB2QERWizBkv6GGaQUKuFJTH5CSEDwAoaSlG5HWWXTtrt8H1XX5lAjbZ4iGbtW-9d_F9k9neJyBE76ptHD5DdBsTE525Llt3HltnqhazFXYhsY8Yv3v_GU7JkTVtwLN9H5P1zeJlfpcvn27v57NlXnNJY14xBkiFkZLxCqGYmqlBlBU1goqKl2Blo6yVgqFilhWsoE0pqprVlFvFGz4mdLe3Dttae6zR1ybq3rj_x1AMJNOcl4UqkgN7x_cheLT6y6ej_I-moIcwdQpTD2HqfZhJudgpDhH_8EKAmjLgv6HDcEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</creator><creatorcontrib>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</creatorcontrib><description>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2013.2260329</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Consensus averaging ; Diffusion strategies ; Distributed estimation ; Enginyeria electrònica ; Expectation-maximization ; Instrumentació i mesura ; Maximum likelihood estimation ; Maximum-likelihood ; Noise measurement ; Sensor networks ; Sensors i actuadors ; Signal processing algorithms ; Signal to noise ratio ; Soft detection ; Wireless sensor networks ; Xarxes de sensors ; Àrees temàtiques de la UPC</subject><ispartof>IEEE signal processing letters, 2013-06, Vol.20 (6), p.595-598</ispartof><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</citedby><cites>FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6509420$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Pereira, S. S.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><creatorcontrib>Pages-Zamora, A.</creatorcontrib><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</description><subject>Consensus averaging</subject><subject>Diffusion strategies</subject><subject>Distributed estimation</subject><subject>Enginyeria electrònica</subject><subject>Expectation-maximization</subject><subject>Instrumentació i mesura</subject><subject>Maximum likelihood estimation</subject><subject>Maximum-likelihood</subject><subject>Noise measurement</subject><subject>Sensor networks</subject><subject>Sensors i actuadors</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Soft detection</subject><subject>Wireless sensor networks</subject><subject>Xarxes de sensors</subject><subject>Àrees temàtiques de la UPC</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWKt3wcv-ga2TpNlsjrXWD6gfUIvHkN2daHS7K0mK-O_N0qKHYSbkeQbmJeScwoRSUJfL1fOEAeUTxgrgTB2QERWizBkv6GGaQUKuFJTH5CSEDwAoaSlG5HWWXTtrt8H1XX5lAjbZ4iGbtW-9d_F9k9neJyBE76ptHD5DdBsTE525Llt3HltnqhazFXYhsY8Yv3v_GU7JkTVtwLN9H5P1zeJlfpcvn27v57NlXnNJY14xBkiFkZLxCqGYmqlBlBU1goqKl2Blo6yVgqFilhWsoE0pqprVlFvFGz4mdLe3Dttae6zR1ybq3rj_x1AMJNOcl4UqkgN7x_cheLT6y6ej_I-moIcwdQpTD2HqfZhJudgpDhH_8EKAmjLgv6HDcEQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Pereira, S. S.</creator><creator>Lopez-Valcarce, R.</creator><creator>Pages-Zamora, A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20130601</creationdate><title>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</title><author>Pereira, S. S. ; Lopez-Valcarce, R. ; Pages-Zamora, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Consensus averaging</topic><topic>Diffusion strategies</topic><topic>Distributed estimation</topic><topic>Enginyeria electrònica</topic><topic>Expectation-maximization</topic><topic>Instrumentació i mesura</topic><topic>Maximum likelihood estimation</topic><topic>Maximum-likelihood</topic><topic>Noise measurement</topic><topic>Sensor networks</topic><topic>Sensors i actuadors</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Soft detection</topic><topic>Wireless sensor networks</topic><topic>Xarxes de sensors</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereira, S. S.</creatorcontrib><creatorcontrib>Lopez-Valcarce, R.</creatorcontrib><creatorcontrib>Pages-Zamora, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereira, S. S.</au><au>Lopez-Valcarce, R.</au><au>Pages-Zamora, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>20</volume><issue>6</issue><spage>595</spage><epage>598</epage><pages>595-598</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>We address the problem of distributed estimation of a parameter from a set of noisy observations collected by a sensor network, assuming that some sensors may be subject to data failures and report only noise. In such scenario, simple schemes such as the Best Linear Unbiased Estimator result in an error floor in moderate and high signal-to-noise ratio (SNR), whereas previously proposed methods based on hard decisions on data failure events degrade as the SNR decreases. Aiming at optimal performance within the whole range of SNRs, we adopt a Maximum Likelihood framework based on the Expectation-Maximization (EM) algorithm. The statistical model and the iterative nature of the EM method allow for a diffusion-based distributed implementation, whereby the information propagation is embedded in the iterative update of the parameters. Numerical examples show that the proposed algorithm practically attains the Cramer-Rao Lower Bound at all SNR values and compares favorably with other approaches.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2013.2260329</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2013-06, Vol.20 (6), p.595-598 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_338696 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Consensus averaging Diffusion strategies Distributed estimation Enginyeria electrònica Expectation-maximization Instrumentació i mesura Maximum likelihood estimation Maximum-likelihood Noise measurement Sensor networks Sensors i actuadors Signal processing algorithms Signal to noise ratio Soft detection Wireless sensor networks Xarxes de sensors Àrees temàtiques de la UPC |
title | A Diffusion-Based EM Algorithm for Distributed Estimation in Unreliable Sensor Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Diffusion-Based%20EM%20Algorithm%20for%20Distributed%20Estimation%20in%20Unreliable%20Sensor%20Networks&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Pereira,%20S.%20S.&rft.date=2013-06-01&rft.volume=20&rft.issue=6&rft.spage=595&rft.epage=598&rft.pages=595-598&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2013.2260329&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_338696%3C/csuc_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-b220e15a7723be064a4aee7b1a515b380f7d9ff752e92f26261d85bc2c13f93d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6509420&rfr_iscdi=true |