Loading…

Modelling function-valued stochastic processes, with applications to fertility dynamics

We introduce a simple and interpretable model for functional data analysis for situations where the observations at each location are functional rather than scalar. This new approach is based on a tensor product representation of the function-valued process and utilizes eigenfunctions of marginal ke...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2017-01, Vol.79 (1), p.177-196
Main Authors: Chen, Kehui, Delicado, Pedro, Müller, Hans-Georg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a simple and interpretable model for functional data analysis for situations where the observations at each location are functional rather than scalar. This new approach is based on a tensor product representation of the function-valued process and utilizes eigenfunctions of marginal kernels. The resulting marginal principal components and product principal components are shown to have nice properties. Given a sample of independent realizations of the underlying function-valued stochastic process, we propose straightforward fitting methods to obtain the components of this model and to establish asymptotic consistency and rates of convergence for the estimates proposed. The methods are illustrated by modelling the dynamics of annual fertility profile functions for 17 countries. This analysis demonstrates that the approach proposed leads to insightful interpretations of the model components and interesting conclusions.
ISSN:1369-7412
1467-9868
DOI:10.1111/rssb.12160