Loading…

Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials

In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and na...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2018-12, Vol.57 (52), p.17063-17068
Main Authors: Zhang, Yu, Liu, Yu, Lim, Khak Ho, Xing, Congcong, Li, Mengyao, Zhang, Ting, Tang, Pengyi, Arbiol, Jordi, Llorca, Jordi, Ng, Ka Ming, Ibáñez, Maria, Guardia, Pablo, Prato, Mirko, Cadavid, Doris, Cabot, Andreu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583
cites cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583
container_end_page 17068
container_issue 52
container_start_page 17063
container_title Angewandte Chemie International Edition
container_volume 57
creator Zhang, Yu
Liu, Yu
Lim, Khak Ho
Xing, Congcong
Li, Mengyao
Zhang, Ting
Tang, Pengyi
Arbiol, Jordi
Llorca, Jordi
Ng, Ka Ming
Ibáñez, Maria
Guardia, Pablo
Prato, Mirko
Cadavid, Doris
Cabot, Andreu
description In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65. Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.
doi_str_mv 10.1002/anie.201809847
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_351671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157904535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBCIQuHKEUXinOJHHCfHqhSo1EIlClfLcTbCKI2LnQj1xifwjXwJrlrKkcNqd6WZ0cwgdEHwgGBMr1VjYEAxyXCeJeIAnRBOScyEYIfhThiLRcZJD516_xbwWYbTY9RjmOUZw-QEvSxME90YDzU0poRoZmvQXa1cNHfhcN66qArzZOuuNbb5_vyaO6vBe1XUEC1ewS1tIOvWGR3NVAvOqNqfoaMqLDjf7T56vh0vRvfx9PFuMhpOY53kVMSEcqorWgpQaSpUpYnWRRKScB6sJrpUtKCQJ6pQOeeFqoQOyVRBS57qnGesj8hWV_tOy-AYnFattMr8PZuhWFDJOEkFCZyrLWfl7HsHvpVvtnNNsCkp4SLHCWc8oAY7ZWe9d1DJlTNL5daSYLmpXm6ql_vqA-FyJ9sVSyj38N-uAyDfAj5MDet_5OTwYTL-E_8B4QSR7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157904535</pqid></control><display><type>article</type><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><source>Wiley</source><creator>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</creator><creatorcontrib>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</creatorcontrib><description>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65. Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201809847</identifier><identifier>PMID: 30398301</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Crystallography ; Electrical resistivity ; Enginyeria química ; Figure of merit ; Heat transport ; Hot pressing ; Materials termoelèctrics ; modulation doping ; modulation doping nanomaterial reactive ink SnSe2 thermoelectricity ; nanomaterial ; Nanomaterials ; Nanoparticles ; Nanotechnology ; reactive ink ; Screw dislocations ; SnSe2 ; Thermoelectric materials ; thermoelectricity ; Àrees temàtiques de la UPC</subject><ispartof>Angewandte Chemie International Edition, 2018-12, Vol.57 (52), p.17063-17068</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</citedby><cites>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</cites><orcidid>0000-0002-7533-3251 ; 0000-0003-3116-8589 ; 0000-0002-2306-095X ; 0000-0001-7313-6740 ; 0000-0002-7447-9582 ; 0000-0002-0332-0013 ; 0000-0002-0695-1726 ; 0000-0001-5013-2843 ; 0000-0002-1376-6078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30398301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Lim, Khak Ho</creatorcontrib><creatorcontrib>Xing, Congcong</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Tang, Pengyi</creatorcontrib><creatorcontrib>Arbiol, Jordi</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Ng, Ka Ming</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Guardia, Pablo</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Cadavid, Doris</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65. Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</description><subject>Charge transport</subject><subject>Crystallography</subject><subject>Electrical resistivity</subject><subject>Enginyeria química</subject><subject>Figure of merit</subject><subject>Heat transport</subject><subject>Hot pressing</subject><subject>Materials termoelèctrics</subject><subject>modulation doping</subject><subject>modulation doping nanomaterial reactive ink SnSe2 thermoelectricity</subject><subject>nanomaterial</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>reactive ink</subject><subject>Screw dislocations</subject><subject>SnSe2</subject><subject>Thermoelectric materials</subject><subject>thermoelectricity</subject><subject>Àrees temàtiques de la UPC</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBCIQuHKEUXinOJHHCfHqhSo1EIlClfLcTbCKI2LnQj1xifwjXwJrlrKkcNqd6WZ0cwgdEHwgGBMr1VjYEAxyXCeJeIAnRBOScyEYIfhThiLRcZJD516_xbwWYbTY9RjmOUZw-QEvSxME90YDzU0poRoZmvQXa1cNHfhcN66qArzZOuuNbb5_vyaO6vBe1XUEC1ewS1tIOvWGR3NVAvOqNqfoaMqLDjf7T56vh0vRvfx9PFuMhpOY53kVMSEcqorWgpQaSpUpYnWRRKScB6sJrpUtKCQJ6pQOeeFqoQOyVRBS57qnGesj8hWV_tOy-AYnFattMr8PZuhWFDJOEkFCZyrLWfl7HsHvpVvtnNNsCkp4SLHCWc8oAY7ZWe9d1DJlTNL5daSYLmpXm6ql_vqA-FyJ9sVSyj38N-uAyDfAj5MDet_5OTwYTL-E_8B4QSR7A</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Zhang, Yu</creator><creator>Liu, Yu</creator><creator>Lim, Khak Ho</creator><creator>Xing, Congcong</creator><creator>Li, Mengyao</creator><creator>Zhang, Ting</creator><creator>Tang, Pengyi</creator><creator>Arbiol, Jordi</creator><creator>Llorca, Jordi</creator><creator>Ng, Ka Ming</creator><creator>Ibáñez, Maria</creator><creator>Guardia, Pablo</creator><creator>Prato, Mirko</creator><creator>Cadavid, Doris</creator><creator>Cabot, Andreu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0000-0003-3116-8589</orcidid><orcidid>https://orcid.org/0000-0002-2306-095X</orcidid><orcidid>https://orcid.org/0000-0001-7313-6740</orcidid><orcidid>https://orcid.org/0000-0002-7447-9582</orcidid><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><orcidid>https://orcid.org/0000-0002-0695-1726</orcidid><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-1376-6078</orcidid></search><sort><creationdate>20181221</creationdate><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><author>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Crystallography</topic><topic>Electrical resistivity</topic><topic>Enginyeria química</topic><topic>Figure of merit</topic><topic>Heat transport</topic><topic>Hot pressing</topic><topic>Materials termoelèctrics</topic><topic>modulation doping</topic><topic>modulation doping nanomaterial reactive ink SnSe2 thermoelectricity</topic><topic>nanomaterial</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>reactive ink</topic><topic>Screw dislocations</topic><topic>SnSe2</topic><topic>Thermoelectric materials</topic><topic>thermoelectricity</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Lim, Khak Ho</creatorcontrib><creatorcontrib>Xing, Congcong</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Tang, Pengyi</creatorcontrib><creatorcontrib>Arbiol, Jordi</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Ng, Ka Ming</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Guardia, Pablo</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Cadavid, Doris</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Recercat</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Liu, Yu</au><au>Lim, Khak Ho</au><au>Xing, Congcong</au><au>Li, Mengyao</au><au>Zhang, Ting</au><au>Tang, Pengyi</au><au>Arbiol, Jordi</au><au>Llorca, Jordi</au><au>Ng, Ka Ming</au><au>Ibáñez, Maria</au><au>Guardia, Pablo</au><au>Prato, Mirko</au><au>Cadavid, Doris</au><au>Cabot, Andreu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>57</volume><issue>52</issue><spage>17063</spage><epage>17068</epage><pages>17063-17068</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65. Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30398301</pmid><doi>10.1002/anie.201809847</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0000-0003-3116-8589</orcidid><orcidid>https://orcid.org/0000-0002-2306-095X</orcidid><orcidid>https://orcid.org/0000-0001-7313-6740</orcidid><orcidid>https://orcid.org/0000-0002-7447-9582</orcidid><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><orcidid>https://orcid.org/0000-0002-0695-1726</orcidid><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-1376-6078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-12, Vol.57 (52), p.17063-17068
issn 1433-7851
1521-3773
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_351671
source Wiley
subjects Charge transport
Crystallography
Electrical resistivity
Enginyeria química
Figure of merit
Heat transport
Hot pressing
Materials termoelèctrics
modulation doping
modulation doping nanomaterial reactive ink SnSe2 thermoelectricity
nanomaterial
Nanomaterials
Nanoparticles
Nanotechnology
reactive ink
Screw dislocations
SnSe2
Thermoelectric materials
thermoelectricity
Àrees temàtiques de la UPC
title Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20Diselenide%20Molecular%20Precursor%20for%20Solution%E2%80%90Processable%20Thermoelectric%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Yu&rft.date=2018-12-21&rft.volume=57&rft.issue=52&rft.spage=17063&rft.epage=17068&rft.pages=17063-17068&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201809847&rft_dat=%3Cproquest_csuc_%3E2157904535%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157904535&rft_id=info:pmid/30398301&rfr_iscdi=true