Loading…
Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials
In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and na...
Saved in:
Published in: | Angewandte Chemie International Edition 2018-12, Vol.57 (52), p.17063-17068 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583 |
---|---|
cites | cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583 |
container_end_page | 17068 |
container_issue | 52 |
container_start_page | 17063 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Zhang, Yu Liu, Yu Lim, Khak Ho Xing, Congcong Li, Mengyao Zhang, Ting Tang, Pengyi Arbiol, Jordi Llorca, Jordi Ng, Ka Ming Ibáñez, Maria Guardia, Pablo Prato, Mirko Cadavid, Doris Cabot, Andreu |
description | In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.
Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles. |
doi_str_mv | 10.1002/anie.201809847 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_351671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2157904535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBCIQuHKEUXinOJHHCfHqhSo1EIlClfLcTbCKI2LnQj1xifwjXwJrlrKkcNqd6WZ0cwgdEHwgGBMr1VjYEAxyXCeJeIAnRBOScyEYIfhThiLRcZJD516_xbwWYbTY9RjmOUZw-QEvSxME90YDzU0poRoZmvQXa1cNHfhcN66qArzZOuuNbb5_vyaO6vBe1XUEC1ewS1tIOvWGR3NVAvOqNqfoaMqLDjf7T56vh0vRvfx9PFuMhpOY53kVMSEcqorWgpQaSpUpYnWRRKScB6sJrpUtKCQJ6pQOeeFqoQOyVRBS57qnGesj8hWV_tOy-AYnFattMr8PZuhWFDJOEkFCZyrLWfl7HsHvpVvtnNNsCkp4SLHCWc8oAY7ZWe9d1DJlTNL5daSYLmpXm6ql_vqA-FyJ9sVSyj38N-uAyDfAj5MDet_5OTwYTL-E_8B4QSR7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2157904535</pqid></control><display><type>article</type><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><source>Wiley</source><creator>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</creator><creatorcontrib>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</creatorcontrib><description>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.
Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201809847</identifier><identifier>PMID: 30398301</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Crystallography ; Electrical resistivity ; Enginyeria química ; Figure of merit ; Heat transport ; Hot pressing ; Materials termoelèctrics ; modulation doping ; modulation doping nanomaterial reactive ink SnSe2 thermoelectricity ; nanomaterial ; Nanomaterials ; Nanoparticles ; Nanotechnology ; reactive ink ; Screw dislocations ; SnSe2 ; Thermoelectric materials ; thermoelectricity ; Àrees temàtiques de la UPC</subject><ispartof>Angewandte Chemie International Edition, 2018-12, Vol.57 (52), p.17063-17068</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</citedby><cites>FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</cites><orcidid>0000-0002-7533-3251 ; 0000-0003-3116-8589 ; 0000-0002-2306-095X ; 0000-0001-7313-6740 ; 0000-0002-7447-9582 ; 0000-0002-0332-0013 ; 0000-0002-0695-1726 ; 0000-0001-5013-2843 ; 0000-0002-1376-6078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30398301$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Lim, Khak Ho</creatorcontrib><creatorcontrib>Xing, Congcong</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Tang, Pengyi</creatorcontrib><creatorcontrib>Arbiol, Jordi</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Ng, Ka Ming</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Guardia, Pablo</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Cadavid, Doris</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.
Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</description><subject>Charge transport</subject><subject>Crystallography</subject><subject>Electrical resistivity</subject><subject>Enginyeria química</subject><subject>Figure of merit</subject><subject>Heat transport</subject><subject>Hot pressing</subject><subject>Materials termoelèctrics</subject><subject>modulation doping</subject><subject>modulation doping nanomaterial reactive ink SnSe2 thermoelectricity</subject><subject>nanomaterial</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>reactive ink</subject><subject>Screw dislocations</subject><subject>SnSe2</subject><subject>Thermoelectric materials</subject><subject>thermoelectricity</subject><subject>Àrees temàtiques de la UPC</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBCIQuHKEUXinOJHHCfHqhSo1EIlClfLcTbCKI2LnQj1xifwjXwJrlrKkcNqd6WZ0cwgdEHwgGBMr1VjYEAxyXCeJeIAnRBOScyEYIfhThiLRcZJD516_xbwWYbTY9RjmOUZw-QEvSxME90YDzU0poRoZmvQXa1cNHfhcN66qArzZOuuNbb5_vyaO6vBe1XUEC1ewS1tIOvWGR3NVAvOqNqfoaMqLDjf7T56vh0vRvfx9PFuMhpOY53kVMSEcqorWgpQaSpUpYnWRRKScB6sJrpUtKCQJ6pQOeeFqoQOyVRBS57qnGesj8hWV_tOy-AYnFattMr8PZuhWFDJOEkFCZyrLWfl7HsHvpVvtnNNsCkp4SLHCWc8oAY7ZWe9d1DJlTNL5daSYLmpXm6ql_vqA-FyJ9sVSyj38N-uAyDfAj5MDet_5OTwYTL-E_8B4QSR7A</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Zhang, Yu</creator><creator>Liu, Yu</creator><creator>Lim, Khak Ho</creator><creator>Xing, Congcong</creator><creator>Li, Mengyao</creator><creator>Zhang, Ting</creator><creator>Tang, Pengyi</creator><creator>Arbiol, Jordi</creator><creator>Llorca, Jordi</creator><creator>Ng, Ka Ming</creator><creator>Ibáñez, Maria</creator><creator>Guardia, Pablo</creator><creator>Prato, Mirko</creator><creator>Cadavid, Doris</creator><creator>Cabot, Andreu</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0000-0003-3116-8589</orcidid><orcidid>https://orcid.org/0000-0002-2306-095X</orcidid><orcidid>https://orcid.org/0000-0001-7313-6740</orcidid><orcidid>https://orcid.org/0000-0002-7447-9582</orcidid><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><orcidid>https://orcid.org/0000-0002-0695-1726</orcidid><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-1376-6078</orcidid></search><sort><creationdate>20181221</creationdate><title>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</title><author>Zhang, Yu ; Liu, Yu ; Lim, Khak Ho ; Xing, Congcong ; Li, Mengyao ; Zhang, Ting ; Tang, Pengyi ; Arbiol, Jordi ; Llorca, Jordi ; Ng, Ka Ming ; Ibáñez, Maria ; Guardia, Pablo ; Prato, Mirko ; Cadavid, Doris ; Cabot, Andreu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Crystallography</topic><topic>Electrical resistivity</topic><topic>Enginyeria química</topic><topic>Figure of merit</topic><topic>Heat transport</topic><topic>Hot pressing</topic><topic>Materials termoelèctrics</topic><topic>modulation doping</topic><topic>modulation doping nanomaterial reactive ink SnSe2 thermoelectricity</topic><topic>nanomaterial</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>reactive ink</topic><topic>Screw dislocations</topic><topic>SnSe2</topic><topic>Thermoelectric materials</topic><topic>thermoelectricity</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Lim, Khak Ho</creatorcontrib><creatorcontrib>Xing, Congcong</creatorcontrib><creatorcontrib>Li, Mengyao</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><creatorcontrib>Tang, Pengyi</creatorcontrib><creatorcontrib>Arbiol, Jordi</creatorcontrib><creatorcontrib>Llorca, Jordi</creatorcontrib><creatorcontrib>Ng, Ka Ming</creatorcontrib><creatorcontrib>Ibáñez, Maria</creatorcontrib><creatorcontrib>Guardia, Pablo</creatorcontrib><creatorcontrib>Prato, Mirko</creatorcontrib><creatorcontrib>Cadavid, Doris</creatorcontrib><creatorcontrib>Cabot, Andreu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Recercat</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yu</au><au>Liu, Yu</au><au>Lim, Khak Ho</au><au>Xing, Congcong</au><au>Li, Mengyao</au><au>Zhang, Ting</au><au>Tang, Pengyi</au><au>Arbiol, Jordi</au><au>Llorca, Jordi</au><au>Ng, Ka Ming</au><au>Ibáñez, Maria</au><au>Guardia, Pablo</au><au>Prato, Mirko</au><au>Cadavid, Doris</au><au>Cabot, Andreu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>57</volume><issue>52</issue><spage>17063</spage><epage>17068</epage><pages>17063-17068</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>In the present work, we detail a fast and simple solution‐based method to synthesize hexagonal SnSe2 nanoplates (NPLs) and their use to produce crystallographically textured SnSe2 nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation‐driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower‐like structures. Crystallographically textured SnSe2 bulk nanomaterials obtained from the hot pressing of these SnSe2 structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe2 NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe2 NPLs, what translates into a three‐fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.
Thermoelectrics: A fast and simple solution‐based method is presented to synthesize flower‐like SnSe2 nanostructures and crystallographically textured SnSe2 nanomaterials, which display highly anisotropic charge and heat transport properties. Unprecedented thermoelectric performance of SnSe2 is achieved through modulation doping by combining SnSe2 nanoplates with metal nanoparticles.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30398301</pmid><doi>10.1002/anie.201809847</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-7533-3251</orcidid><orcidid>https://orcid.org/0000-0003-3116-8589</orcidid><orcidid>https://orcid.org/0000-0002-2306-095X</orcidid><orcidid>https://orcid.org/0000-0001-7313-6740</orcidid><orcidid>https://orcid.org/0000-0002-7447-9582</orcidid><orcidid>https://orcid.org/0000-0002-0332-0013</orcidid><orcidid>https://orcid.org/0000-0002-0695-1726</orcidid><orcidid>https://orcid.org/0000-0001-5013-2843</orcidid><orcidid>https://orcid.org/0000-0002-1376-6078</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-12, Vol.57 (52), p.17063-17068 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_351671 |
source | Wiley |
subjects | Charge transport Crystallography Electrical resistivity Enginyeria química Figure of merit Heat transport Hot pressing Materials termoelèctrics modulation doping modulation doping nanomaterial reactive ink SnSe2 thermoelectricity nanomaterial Nanomaterials Nanoparticles Nanotechnology reactive ink Screw dislocations SnSe2 Thermoelectric materials thermoelectricity Àrees temàtiques de la UPC |
title | Tin Diselenide Molecular Precursor for Solution‐Processable Thermoelectric Materials |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A51%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tin%20Diselenide%20Molecular%20Precursor%20for%20Solution%E2%80%90Processable%20Thermoelectric%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhang,%20Yu&rft.date=2018-12-21&rft.volume=57&rft.issue=52&rft.spage=17063&rft.epage=17068&rft.pages=17063-17068&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201809847&rft_dat=%3Cproquest_csuc_%3E2157904535%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4927-1252cf2d7ea667afc1ccb4984552884cda2b2e94aba955baf7c773ab2d56c9583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2157904535&rft_id=info:pmid/30398301&rfr_iscdi=true |