Loading…
Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference
This paper presents the results of the Dynamic Pricing Challenge, held on the occasion of the 17th INFORMS Revenue Management and Pricing Section Conference on June 29–30, 2017 in Amsterdam, The Netherlands. For this challenge, participants submitted algorithms for pricing and demand learning of whi...
Saved in:
Published in: | Journal of revenue and pricing management 2019-06, Vol.18 (3), p.185-203 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23 |
---|---|
cites | cdi_FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23 |
container_end_page | 203 |
container_issue | 3 |
container_start_page | 185 |
container_title | Journal of revenue and pricing management |
container_volume | 18 |
creator | van de Geer, Ruben den Boer, Arnoud V. Bayliss, Christopher Currie, Christine S. M. Ellina, Andria Esders, Malte Haensel, Alwin Lei, Xiao Maclean, Kyle D. S. Martinez-Sykora, Antonio Riseth, Asbjørn Nilsen Ødegaard, Fredrik Zachariades, Simos |
description | This paper presents the results of the Dynamic Pricing Challenge, held on the occasion of the 17th INFORMS Revenue Management and Pricing Section Conference on June 29–30, 2017 in Amsterdam, The Netherlands. For this challenge, participants submitted algorithms for pricing and demand learning of which the numerical performance was analyzed in simulated market environments. This allows consideration of market dynamics that are not analytically tractable or can not be empirically analyzed due to practical complications. Our findings implicate that the relative performance of algorithms varies substantially across different market dynamics, which confirms the intrinsic complexity of pricing and learning in the presence of competition. |
doi_str_mv | 10.1057/s41272-018-00164-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_355087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227626462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23</originalsourceid><addsrcrecordid>eNp9kd1KAzEQhRdRsFZfwKuA4N1q_rPrnajVQmuhKngX0nS2TWmzNUmRvoDP7fYHCl54MWQGzvmYzMmyS4JvCBbqNnJCFc0xKXKMieQ5P8pahCuVS6E-j7e9zGXJ8Gl2FuMMY0olV63s53HtzcJZtAzOOj9Bxo_RHEzwm-HbpSmy9WIJySVX-zvkfHSTaYqoCvUCpSmg8R-AnZr5HPwEkElbAcVEoe5rZzDsv6FhH10fpLWvIIC3cJ6dVGYe4WL_trOPztP7w0veGzx3H-57uWUlS3lFzJhKMEwpU8DI2kqJkowAFyOKS2WpxZYbLKAEMxaEFKJigvHKUm6kNJS1M7Lj2riyOoCFYE3StXGHYVMUK6qZELhQjedq51mG-msFMelZvQq-WVNTSpVsDik3ZLonhzrGAJVufrkwYa0J1puM9C4j3WSktxlp3pjYzhQbcXOycED_4_oFrl-Ung</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227626462</pqid></control><display><type>article</type><title>Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><source>Alma/SFX Local Collection</source><creator>van de Geer, Ruben ; den Boer, Arnoud V. ; Bayliss, Christopher ; Currie, Christine S. M. ; Ellina, Andria ; Esders, Malte ; Haensel, Alwin ; Lei, Xiao ; Maclean, Kyle D. S. ; Martinez-Sykora, Antonio ; Riseth, Asbjørn Nilsen ; Ødegaard, Fredrik ; Zachariades, Simos</creator><creatorcontrib>van de Geer, Ruben ; den Boer, Arnoud V. ; Bayliss, Christopher ; Currie, Christine S. M. ; Ellina, Andria ; Esders, Malte ; Haensel, Alwin ; Lei, Xiao ; Maclean, Kyle D. S. ; Martinez-Sykora, Antonio ; Riseth, Asbjørn Nilsen ; Ødegaard, Fredrik ; Zachariades, Simos</creatorcontrib><description>This paper presents the results of the Dynamic Pricing Challenge, held on the occasion of the 17th INFORMS Revenue Management and Pricing Section Conference on June 29–30, 2017 in Amsterdam, The Netherlands. For this challenge, participants submitted algorithms for pricing and demand learning of which the numerical performance was analyzed in simulated market environments. This allows consideration of market dynamics that are not analytically tractable or can not be empirically analyzed due to practical complications. Our findings implicate that the relative performance of algorithms varies substantially across different market dynamics, which confirms the intrinsic complexity of pricing and learning in the presence of competition.</description><identifier>ISSN: 1476-6930</identifier><identifier>ISSN: 1477-657X</identifier><identifier>EISSN: 1477-657X</identifier><identifier>DOI: 10.1057/s41272-018-00164-4</identifier><language>eng</language><publisher>London: Palgrave Macmillan UK</publisher><subject>algorismes ; Algorismes computacionals ; Algorithms ; algoritmos ; Algoritmos computacionales ; aprendizaje ; aprenentatge ; Business and Management ; competitive environment ; Computer algorithms ; Conferences ; entorn competitiu ; entorno competitivo ; learning ; marketplaces ; mercados ; mercats ; Practice Article ; Pricing policies</subject><ispartof>Journal of revenue and pricing management, 2019-06, Vol.18 (3), p.185-203</ispartof><rights>Springer Nature Limited 2018</rights><rights>Copyright Palgrave Macmillan Jun 2019</rights><rights>(c) Author/s & (c) Journal info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23</citedby><cites>FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2227626462/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2227626462?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11687,27923,27924,36059,44362,74666</link.rule.ids></links><search><creatorcontrib>van de Geer, Ruben</creatorcontrib><creatorcontrib>den Boer, Arnoud V.</creatorcontrib><creatorcontrib>Bayliss, Christopher</creatorcontrib><creatorcontrib>Currie, Christine S. M.</creatorcontrib><creatorcontrib>Ellina, Andria</creatorcontrib><creatorcontrib>Esders, Malte</creatorcontrib><creatorcontrib>Haensel, Alwin</creatorcontrib><creatorcontrib>Lei, Xiao</creatorcontrib><creatorcontrib>Maclean, Kyle D. S.</creatorcontrib><creatorcontrib>Martinez-Sykora, Antonio</creatorcontrib><creatorcontrib>Riseth, Asbjørn Nilsen</creatorcontrib><creatorcontrib>Ødegaard, Fredrik</creatorcontrib><creatorcontrib>Zachariades, Simos</creatorcontrib><title>Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference</title><title>Journal of revenue and pricing management</title><addtitle>J Revenue Pricing Manag</addtitle><description>This paper presents the results of the Dynamic Pricing Challenge, held on the occasion of the 17th INFORMS Revenue Management and Pricing Section Conference on June 29–30, 2017 in Amsterdam, The Netherlands. For this challenge, participants submitted algorithms for pricing and demand learning of which the numerical performance was analyzed in simulated market environments. This allows consideration of market dynamics that are not analytically tractable or can not be empirically analyzed due to practical complications. Our findings implicate that the relative performance of algorithms varies substantially across different market dynamics, which confirms the intrinsic complexity of pricing and learning in the presence of competition.</description><subject>algorismes</subject><subject>Algorismes computacionals</subject><subject>Algorithms</subject><subject>algoritmos</subject><subject>Algoritmos computacionales</subject><subject>aprendizaje</subject><subject>aprenentatge</subject><subject>Business and Management</subject><subject>competitive environment</subject><subject>Computer algorithms</subject><subject>Conferences</subject><subject>entorn competitiu</subject><subject>entorno competitivo</subject><subject>learning</subject><subject>marketplaces</subject><subject>mercados</subject><subject>mercats</subject><subject>Practice Article</subject><subject>Pricing policies</subject><issn>1476-6930</issn><issn>1477-657X</issn><issn>1477-657X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kd1KAzEQhRdRsFZfwKuA4N1q_rPrnajVQmuhKngX0nS2TWmzNUmRvoDP7fYHCl54MWQGzvmYzMmyS4JvCBbqNnJCFc0xKXKMieQ5P8pahCuVS6E-j7e9zGXJ8Gl2FuMMY0olV63s53HtzcJZtAzOOj9Bxo_RHEzwm-HbpSmy9WIJySVX-zvkfHSTaYqoCvUCpSmg8R-AnZr5HPwEkElbAcVEoe5rZzDsv6FhH10fpLWvIIC3cJ6dVGYe4WL_trOPztP7w0veGzx3H-57uWUlS3lFzJhKMEwpU8DI2kqJkowAFyOKS2WpxZYbLKAEMxaEFKJigvHKUm6kNJS1M7Lj2riyOoCFYE3StXGHYVMUK6qZELhQjedq51mG-msFMelZvQq-WVNTSpVsDik3ZLonhzrGAJVufrkwYa0J1puM9C4j3WSktxlp3pjYzhQbcXOycED_4_oFrl-Ung</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>van de Geer, Ruben</creator><creator>den Boer, Arnoud V.</creator><creator>Bayliss, Christopher</creator><creator>Currie, Christine S. M.</creator><creator>Ellina, Andria</creator><creator>Esders, Malte</creator><creator>Haensel, Alwin</creator><creator>Lei, Xiao</creator><creator>Maclean, Kyle D. S.</creator><creator>Martinez-Sykora, Antonio</creator><creator>Riseth, Asbjørn Nilsen</creator><creator>Ødegaard, Fredrik</creator><creator>Zachariades, Simos</creator><general>Palgrave Macmillan UK</general><general>Palgrave Macmillan</general><general>Journal of Revenue and Pricing Management</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7XB</scope><scope>87Z</scope><scope>8A9</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>XX2</scope></search><sort><creationdate>20190601</creationdate><title>Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference</title><author>van de Geer, Ruben ; den Boer, Arnoud V. ; Bayliss, Christopher ; Currie, Christine S. M. ; Ellina, Andria ; Esders, Malte ; Haensel, Alwin ; Lei, Xiao ; Maclean, Kyle D. S. ; Martinez-Sykora, Antonio ; Riseth, Asbjørn Nilsen ; Ødegaard, Fredrik ; Zachariades, Simos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>algorismes</topic><topic>Algorismes computacionals</topic><topic>Algorithms</topic><topic>algoritmos</topic><topic>Algoritmos computacionales</topic><topic>aprendizaje</topic><topic>aprenentatge</topic><topic>Business and Management</topic><topic>competitive environment</topic><topic>Computer algorithms</topic><topic>Conferences</topic><topic>entorn competitiu</topic><topic>entorno competitivo</topic><topic>learning</topic><topic>marketplaces</topic><topic>mercados</topic><topic>mercats</topic><topic>Practice Article</topic><topic>Pricing policies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van de Geer, Ruben</creatorcontrib><creatorcontrib>den Boer, Arnoud V.</creatorcontrib><creatorcontrib>Bayliss, Christopher</creatorcontrib><creatorcontrib>Currie, Christine S. M.</creatorcontrib><creatorcontrib>Ellina, Andria</creatorcontrib><creatorcontrib>Esders, Malte</creatorcontrib><creatorcontrib>Haensel, Alwin</creatorcontrib><creatorcontrib>Lei, Xiao</creatorcontrib><creatorcontrib>Maclean, Kyle D. S.</creatorcontrib><creatorcontrib>Martinez-Sykora, Antonio</creatorcontrib><creatorcontrib>Riseth, Asbjørn Nilsen</creatorcontrib><creatorcontrib>Ødegaard, Fredrik</creatorcontrib><creatorcontrib>Zachariades, Simos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Accounting, Tax & Banking Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Accounting & Tax Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Accounting, Tax & Banking Collection (ProQuest)</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax & Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>Journal of revenue and pricing management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van de Geer, Ruben</au><au>den Boer, Arnoud V.</au><au>Bayliss, Christopher</au><au>Currie, Christine S. M.</au><au>Ellina, Andria</au><au>Esders, Malte</au><au>Haensel, Alwin</au><au>Lei, Xiao</au><au>Maclean, Kyle D. S.</au><au>Martinez-Sykora, Antonio</au><au>Riseth, Asbjørn Nilsen</au><au>Ødegaard, Fredrik</au><au>Zachariades, Simos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference</atitle><jtitle>Journal of revenue and pricing management</jtitle><stitle>J Revenue Pricing Manag</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>185</spage><epage>203</epage><pages>185-203</pages><issn>1476-6930</issn><issn>1477-657X</issn><eissn>1477-657X</eissn><abstract>This paper presents the results of the Dynamic Pricing Challenge, held on the occasion of the 17th INFORMS Revenue Management and Pricing Section Conference on June 29–30, 2017 in Amsterdam, The Netherlands. For this challenge, participants submitted algorithms for pricing and demand learning of which the numerical performance was analyzed in simulated market environments. This allows consideration of market dynamics that are not analytically tractable or can not be empirically analyzed due to practical complications. Our findings implicate that the relative performance of algorithms varies substantially across different market dynamics, which confirms the intrinsic complexity of pricing and learning in the presence of competition.</abstract><cop>London</cop><pub>Palgrave Macmillan UK</pub><doi>10.1057/s41272-018-00164-4</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-6930 |
ispartof | Journal of revenue and pricing management, 2019-06, Vol.18 (3), p.185-203 |
issn | 1476-6930 1477-657X 1477-657X |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_355087 |
source | ABI/INFORM Global (ProQuest); Springer Nature; Alma/SFX Local Collection |
subjects | algorismes Algorismes computacionals Algorithms algoritmos Algoritmos computacionales aprendizaje aprenentatge Business and Management competitive environment Computer algorithms Conferences entorn competitiu entorno competitivo learning marketplaces mercados mercats Practice Article Pricing policies |
title | Dynamic pricing and learning with competition: insights from the dynamic pricing challenge at the 2017 INFORMS RM & pricing conference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20pricing%20and%20learning%20with%20competition:%20insights%20from%20the%20dynamic%20pricing%20challenge%20at%20the%202017%20INFORMS%20RM%20&%20pricing%20conference&rft.jtitle=Journal%20of%20revenue%20and%20pricing%20management&rft.au=van%20de%20Geer,%20Ruben&rft.date=2019-06-01&rft.volume=18&rft.issue=3&rft.spage=185&rft.epage=203&rft.pages=185-203&rft.issn=1476-6930&rft.eissn=1477-657X&rft_id=info:doi/10.1057/s41272-018-00164-4&rft_dat=%3Cproquest_csuc_%3E2227626462%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-f1ad26ea377a8ebccf7591be08b2097c2c0c4a05e9ead51185f3534fc24a66a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2227626462&rft_id=info:pmid/&rfr_iscdi=true |