Loading…
Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations
This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spac...
Saved in:
Published in: | User modeling and user-adapted interaction 2019-09, Vol.29 (4), p.869-892 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3 |
container_end_page | 892 |
container_issue | 4 |
container_start_page | 869 |
container_title | User modeling and user-adapted interaction |
container_volume | 29 |
creator | Amarasinghe, Ishari Hernández-Leo, Davinia Jonsson, Anders |
description | This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated. |
doi_str_mv | 10.1007/s11257-019-09233-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_356496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212986893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AU8Fz9FM0ibNUda_sOBFz2GapkuWbluTVvDbm90u7M1DCDNvfo9JHiG3wO6BMfUQAXihKANNmeZC0PKMLKBQgoLQcE4WqZtTKGV5Sa5i3LIESaUXxD_hiNR3TR92rs5qF_2mywYMuHOjCzFLQoY1DqP_cZnt2xarPuChijb41O82me8ytKGPkcYBrYtZ6zB0eyX6cUrTfRevyUWDbXQ3x3tJvl6eP1dvdP3x-r56XFObs2KkstTO2YprJXVeOVlCAUxIqSsLJZOodI1c6KpOmoWCl7pStskLVYPMgTViSWD2tXGyJjjrgsXR9OhPxf5wprgRhcy1TMzdzAyh_55cHM22n0KX1jScA9fp37RIU_zovH9qcI0Zgt9h-DXAzD4GM8dgUgzmEIMpEyRmKKbhbuPCyfof6g-FxYwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212986893</pqid></control><display><type>article</type><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</creator><creatorcontrib>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</creatorcontrib><description>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-019-09233-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive collaborative scripting ; Analytics ; CAI ; Case studies ; Classrooms ; Collaborative learning ; Collaborative learning flow patterns (CLFP) ; Computer assisted instruction ; Computer Science ; Computer supported collaborative learning (CSCL) ; Design parameters ; Distance learning ; Learning activities ; Machine learning ; Management of Computing and Information Systems ; Multimedia Information Systems ; Prediction algorithms ; Predictions ; Real time ; Students ; Supervised machine learning ; User Interfaces and Human Computer Interaction</subject><ispartof>User modeling and user-adapted interaction, 2019-09, Vol.29 (4), p.869-892</ispartof><rights>Springer Nature B.V. 2019</rights><rights>User Modeling and User-Adapted Interaction is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>info:eu-repo/semantics/embargoedAccess © Springer The final publication is available at Springer via <a href="http://dx.doi.org/10.1007/s11257-019-09233-8">http://dx.doi.org/10.1007/s11257-019-09233-8</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</citedby><cites>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</cites><orcidid>0000-0003-2960-4804 ; 0000-0003-0548-7455 ; 0000-0002-5756-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2212986893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2212986893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Amarasinghe, Ishari</creatorcontrib><creatorcontrib>Hernández-Leo, Davinia</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><title>User modeling and user-adapted interaction</title><addtitle>User Model User-Adap Inter</addtitle><description>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</description><subject>Adaptive collaborative scripting</subject><subject>Analytics</subject><subject>CAI</subject><subject>Case studies</subject><subject>Classrooms</subject><subject>Collaborative learning</subject><subject>Collaborative learning flow patterns (CLFP)</subject><subject>Computer assisted instruction</subject><subject>Computer Science</subject><subject>Computer supported collaborative learning (CSCL)</subject><subject>Design parameters</subject><subject>Distance learning</subject><subject>Learning activities</subject><subject>Machine learning</subject><subject>Management of Computing and Information Systems</subject><subject>Multimedia Information Systems</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Real time</subject><subject>Students</subject><subject>Supervised machine learning</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9LxDAQxYMouK5-AU8Fz9FM0ibNUda_sOBFz2GapkuWbluTVvDbm90u7M1DCDNvfo9JHiG3wO6BMfUQAXihKANNmeZC0PKMLKBQgoLQcE4WqZtTKGV5Sa5i3LIESaUXxD_hiNR3TR92rs5qF_2mywYMuHOjCzFLQoY1DqP_cZnt2xarPuChijb41O82me8ytKGPkcYBrYtZ6zB0eyX6cUrTfRevyUWDbXQ3x3tJvl6eP1dvdP3x-r56XFObs2KkstTO2YprJXVeOVlCAUxIqSsLJZOodI1c6KpOmoWCl7pStskLVYPMgTViSWD2tXGyJjjrgsXR9OhPxf5wprgRhcy1TMzdzAyh_55cHM22n0KX1jScA9fp37RIU_zovH9qcI0Zgt9h-DXAzD4GM8dgUgzmEIMpEyRmKKbhbuPCyfof6g-FxYwc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Amarasinghe, Ishari</creator><creator>Hernández-Leo, Davinia</creator><creator>Jonsson, Anders</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0003-2960-4804</orcidid><orcidid>https://orcid.org/0000-0003-0548-7455</orcidid><orcidid>https://orcid.org/0000-0002-5756-7847</orcidid></search><sort><creationdate>20190901</creationdate><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><author>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive collaborative scripting</topic><topic>Analytics</topic><topic>CAI</topic><topic>Case studies</topic><topic>Classrooms</topic><topic>Collaborative learning</topic><topic>Collaborative learning flow patterns (CLFP)</topic><topic>Computer assisted instruction</topic><topic>Computer Science</topic><topic>Computer supported collaborative learning (CSCL)</topic><topic>Design parameters</topic><topic>Distance learning</topic><topic>Learning activities</topic><topic>Machine learning</topic><topic>Management of Computing and Information Systems</topic><topic>Multimedia Information Systems</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Real time</topic><topic>Students</topic><topic>Supervised machine learning</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amarasinghe, Ishari</creatorcontrib><creatorcontrib>Hernández-Leo, Davinia</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Psychology Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Psychology Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amarasinghe, Ishari</au><au>Hernández-Leo, Davinia</au><au>Jonsson, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</atitle><jtitle>User modeling and user-adapted interaction</jtitle><stitle>User Model User-Adap Inter</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>869</spage><epage>892</epage><pages>869-892</pages><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11257-019-09233-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2960-4804</orcidid><orcidid>https://orcid.org/0000-0003-0548-7455</orcidid><orcidid>https://orcid.org/0000-0002-5756-7847</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-1868 |
ispartof | User modeling and user-adapted interaction, 2019-09, Vol.29 (4), p.869-892 |
issn | 0924-1868 1573-1391 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_356496 |
source | EBSCOhost Business Source Ultimate; ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Adaptive collaborative scripting Analytics CAI Case studies Classrooms Collaborative learning Collaborative learning flow patterns (CLFP) Computer assisted instruction Computer Science Computer supported collaborative learning (CSCL) Design parameters Distance learning Learning activities Machine learning Management of Computing and Information Systems Multimedia Information Systems Prediction algorithms Predictions Real time Students Supervised machine learning User Interfaces and Human Computer Interaction |
title | Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-informed%20design%20parameters%20for%20adaptive%20collaborative%20scripting%20in%20across-spaces%20learning%20situations&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Amarasinghe,%20Ishari&rft.date=2019-09-01&rft.volume=29&rft.issue=4&rft.spage=869&rft.epage=892&rft.pages=869-892&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-019-09233-8&rft_dat=%3Cproquest_csuc_%3E2212986893%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212986893&rft_id=info:pmid/&rfr_iscdi=true |