Loading…

Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations

This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spac...

Full description

Saved in:
Bibliographic Details
Published in:User modeling and user-adapted interaction 2019-09, Vol.29 (4), p.869-892
Main Authors: Amarasinghe, Ishari, Hernández-Leo, Davinia, Jonsson, Anders
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3
cites cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3
container_end_page 892
container_issue 4
container_start_page 869
container_title User modeling and user-adapted interaction
container_volume 29
creator Amarasinghe, Ishari
Hernández-Leo, Davinia
Jonsson, Anders
description This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.
doi_str_mv 10.1007/s11257-019-09233-8
format article
fullrecord <record><control><sourceid>proquest_csuc_</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_356496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2212986893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AU8Fz9FM0ibNUda_sOBFz2GapkuWbluTVvDbm90u7M1DCDNvfo9JHiG3wO6BMfUQAXihKANNmeZC0PKMLKBQgoLQcE4WqZtTKGV5Sa5i3LIESaUXxD_hiNR3TR92rs5qF_2mywYMuHOjCzFLQoY1DqP_cZnt2xarPuChijb41O82me8ytKGPkcYBrYtZ6zB0eyX6cUrTfRevyUWDbXQ3x3tJvl6eP1dvdP3x-r56XFObs2KkstTO2YprJXVeOVlCAUxIqSsLJZOodI1c6KpOmoWCl7pStskLVYPMgTViSWD2tXGyJjjrgsXR9OhPxf5wprgRhcy1TMzdzAyh_55cHM22n0KX1jScA9fp37RIU_zovH9qcI0Zgt9h-DXAzD4GM8dgUgzmEIMpEyRmKKbhbuPCyfof6g-FxYwc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2212986893</pqid></control><display><type>article</type><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</creator><creatorcontrib>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</creatorcontrib><description>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-019-09233-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive collaborative scripting ; Analytics ; CAI ; Case studies ; Classrooms ; Collaborative learning ; Collaborative learning flow patterns (CLFP) ; Computer assisted instruction ; Computer Science ; Computer supported collaborative learning (CSCL) ; Design parameters ; Distance learning ; Learning activities ; Machine learning ; Management of Computing and Information Systems ; Multimedia Information Systems ; Prediction algorithms ; Predictions ; Real time ; Students ; Supervised machine learning ; User Interfaces and Human Computer Interaction</subject><ispartof>User modeling and user-adapted interaction, 2019-09, Vol.29 (4), p.869-892</ispartof><rights>Springer Nature B.V. 2019</rights><rights>User Modeling and User-Adapted Interaction is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>info:eu-repo/semantics/embargoedAccess © Springer The final publication is available at Springer via &lt;a href="http://dx.doi.org/10.1007/s11257-019-09233-8"&gt;http://dx.doi.org/10.1007/s11257-019-09233-8&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</citedby><cites>FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</cites><orcidid>0000-0003-2960-4804 ; 0000-0003-0548-7455 ; 0000-0002-5756-7847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2212986893/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2212986893?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Amarasinghe, Ishari</creatorcontrib><creatorcontrib>Hernández-Leo, Davinia</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><title>User modeling and user-adapted interaction</title><addtitle>User Model User-Adap Inter</addtitle><description>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</description><subject>Adaptive collaborative scripting</subject><subject>Analytics</subject><subject>CAI</subject><subject>Case studies</subject><subject>Classrooms</subject><subject>Collaborative learning</subject><subject>Collaborative learning flow patterns (CLFP)</subject><subject>Computer assisted instruction</subject><subject>Computer Science</subject><subject>Computer supported collaborative learning (CSCL)</subject><subject>Design parameters</subject><subject>Distance learning</subject><subject>Learning activities</subject><subject>Machine learning</subject><subject>Management of Computing and Information Systems</subject><subject>Multimedia Information Systems</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Real time</subject><subject>Students</subject><subject>Supervised machine learning</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9LxDAQxYMouK5-AU8Fz9FM0ibNUda_sOBFz2GapkuWbluTVvDbm90u7M1DCDNvfo9JHiG3wO6BMfUQAXihKANNmeZC0PKMLKBQgoLQcE4WqZtTKGV5Sa5i3LIESaUXxD_hiNR3TR92rs5qF_2mywYMuHOjCzFLQoY1DqP_cZnt2xarPuChijb41O82me8ytKGPkcYBrYtZ6zB0eyX6cUrTfRevyUWDbXQ3x3tJvl6eP1dvdP3x-r56XFObs2KkstTO2YprJXVeOVlCAUxIqSsLJZOodI1c6KpOmoWCl7pStskLVYPMgTViSWD2tXGyJjjrgsXR9OhPxf5wprgRhcy1TMzdzAyh_55cHM22n0KX1jScA9fp37RIU_zovH9qcI0Zgt9h-DXAzD4GM8dgUgzmEIMpEyRmKKbhbuPCyfof6g-FxYwc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Amarasinghe, Ishari</creator><creator>Hernández-Leo, Davinia</creator><creator>Jonsson, Anders</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88G</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>XX2</scope><orcidid>https://orcid.org/0000-0003-2960-4804</orcidid><orcidid>https://orcid.org/0000-0003-0548-7455</orcidid><orcidid>https://orcid.org/0000-0002-5756-7847</orcidid></search><sort><creationdate>20190901</creationdate><title>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</title><author>Amarasinghe, Ishari ; Hernández-Leo, Davinia ; Jonsson, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive collaborative scripting</topic><topic>Analytics</topic><topic>CAI</topic><topic>Case studies</topic><topic>Classrooms</topic><topic>Collaborative learning</topic><topic>Collaborative learning flow patterns (CLFP)</topic><topic>Computer assisted instruction</topic><topic>Computer Science</topic><topic>Computer supported collaborative learning (CSCL)</topic><topic>Design parameters</topic><topic>Distance learning</topic><topic>Learning activities</topic><topic>Machine learning</topic><topic>Management of Computing and Information Systems</topic><topic>Multimedia Information Systems</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Real time</topic><topic>Students</topic><topic>Supervised machine learning</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amarasinghe, Ishari</creatorcontrib><creatorcontrib>Hernández-Leo, Davinia</creatorcontrib><creatorcontrib>Jonsson, Anders</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Psychology Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>Psychology Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Recercat</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amarasinghe, Ishari</au><au>Hernández-Leo, Davinia</au><au>Jonsson, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations</atitle><jtitle>User modeling and user-adapted interaction</jtitle><stitle>User Model User-Adap Inter</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>29</volume><issue>4</issue><spage>869</spage><epage>892</epage><pages>869-892</pages><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11257-019-09233-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-2960-4804</orcidid><orcidid>https://orcid.org/0000-0003-0548-7455</orcidid><orcidid>https://orcid.org/0000-0002-5756-7847</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-1868
ispartof User modeling and user-adapted interaction, 2019-09, Vol.29 (4), p.869-892
issn 0924-1868
1573-1391
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_356496
source EBSCOhost Business Source Ultimate; ABI/INFORM Global (ProQuest); Springer Nature
subjects Adaptive collaborative scripting
Analytics
CAI
Case studies
Classrooms
Collaborative learning
Collaborative learning flow patterns (CLFP)
Computer assisted instruction
Computer Science
Computer supported collaborative learning (CSCL)
Design parameters
Distance learning
Learning activities
Machine learning
Management of Computing and Information Systems
Multimedia Information Systems
Prediction algorithms
Predictions
Real time
Students
Supervised machine learning
User Interfaces and Human Computer Interaction
title Data-informed design parameters for adaptive collaborative scripting in across-spaces learning situations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_csuc_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-informed%20design%20parameters%20for%20adaptive%20collaborative%20scripting%20in%20across-spaces%20learning%20situations&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Amarasinghe,%20Ishari&rft.date=2019-09-01&rft.volume=29&rft.issue=4&rft.spage=869&rft.epage=892&rft.pages=869-892&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-019-09233-8&rft_dat=%3Cproquest_csuc_%3E2212986893%3C/proquest_csuc_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-689eecb297694be6815103669bc1806a79da239bdbe6c15289b7cf457d16410f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2212986893&rft_id=info:pmid/&rfr_iscdi=true