Loading…

Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil

Center-pivot irrigated cropland (CPIC) is a critical component of irrigation and plays an essential role in improving water use efficiency and increasing food production. To automatically extract the spatial distribution of CPIC in Brazil based on the remote sensing technology, we constructed a trai...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangyu, Liu, Wei, He, Wenbin, Liu, Guoying, Yin, Hongyan, Zhang
Format: Dataset
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Xiangyu, Liu
Wei, He
Wenbin, Liu
Guoying, Yin
Hongyan, Zhang
description Center-pivot irrigated cropland (CPIC) is a critical component of irrigation and plays an essential role in improving water use efficiency and increasing food production. To automatically extract the spatial distribution of CPIC in Brazil based on the remote sensing technology, we constructed a training dataset that supports the semantic segmentation models. The dataset were built with the  Landsat 5 , 7 and 8  images as well as the CPIC maps from ANA reference data. We used the Landsat images in 2005, 2010 and 2015 to build the dataset. The samples in train_images and train_masks were used to train and valid the Convolutional Neural Network models;  The samples in valid_data were used to test the model's prediction accuracy. Pixels with values 255 and 0 in the mask samples represent the CPIC and background categories. For technical details that used to create the dataset, please refer to https://doi.org/10.1016/j.isprsjprs.2023.10.007.
doi_str_mv 10.5281/zenodo.10035903
format dataset
fullrecord <record><control><sourceid>datacite</sourceid><recordid>TN_cdi_datacite_primary_10_5281_zenodo_10035903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_5281_zenodo_10035903</sourcerecordid><originalsourceid>FETCH-LOGICAL-d813-51ae1773c110af912335925f2e1e0f822df38a818c15842342b0fc4c18fafe003</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhbNQsLZdu80fSHtvMnHSpRZfMCBI98NtHiUyzQyZKNhf75Tq6qzO4TsfY3cIKy0Nrk8-9a5fIYDSG1BXbIamlsJIpW_Y7Th-AgDqezNjHw0lN1IRexq9447KlIWHPvMjDUNMB04pfVHHrU_FZzHE777wmHM8UJkaNvdDN23wmPhjplPsFuw6UDf65V_O2e75abd9Fc37y9v2oRHOoBIayWNdK4sIFDYo1YQqdZAePQQjpQvKkEFjUZtKqkruIdjKogkU_HRsztaX2TOzjcW3Q45Hyj8tQnu20F4stP8W1C-1wVPT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>dataset</recordtype></control><display><type>dataset</type><title>Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil</title><source>ScienceDirect Journals</source><source>Elsevier</source><creator>Xiangyu, Liu ; Wei, He ; Wenbin, Liu ; Guoying, Yin ; Hongyan, Zhang</creator><creatorcontrib>Xiangyu, Liu ; Wei, He ; Wenbin, Liu ; Guoying, Yin ; Hongyan, Zhang</creatorcontrib><description>Center-pivot irrigated cropland (CPIC) is a critical component of irrigation and plays an essential role in improving water use efficiency and increasing food production. To automatically extract the spatial distribution of CPIC in Brazil based on the remote sensing technology, we constructed a training dataset that supports the semantic segmentation models. The dataset were built with the  Landsat 5 , 7 and 8  images as well as the CPIC maps from ANA reference data. We used the Landsat images in 2005, 2010 and 2015 to build the dataset. The samples in train_images and train_masks were used to train and valid the Convolutional Neural Network models;  The samples in valid_data were used to test the model's prediction accuracy. Pixels with values 255 and 0 in the mask samples represent the CPIC and background categories. For technical details that used to create the dataset, please refer to https://doi.org/10.1016/j.isprsjprs.2023.10.007.</description><identifier>ISSN: 1872-8235</identifier><identifier>DOI: 10.5281/zenodo.10035903</identifier><language>eng</language><publisher>Zenodo</publisher><subject>irrigation ; remote sensing ; semantic segmentation</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9699-338X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Xiangyu, Liu</creatorcontrib><creatorcontrib>Wei, He</creatorcontrib><creatorcontrib>Wenbin, Liu</creatorcontrib><creatorcontrib>Guoying, Yin</creatorcontrib><creatorcontrib>Hongyan, Zhang</creatorcontrib><title>Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil</title><description>Center-pivot irrigated cropland (CPIC) is a critical component of irrigation and plays an essential role in improving water use efficiency and increasing food production. To automatically extract the spatial distribution of CPIC in Brazil based on the remote sensing technology, we constructed a training dataset that supports the semantic segmentation models. The dataset were built with the  Landsat 5 , 7 and 8  images as well as the CPIC maps from ANA reference data. We used the Landsat images in 2005, 2010 and 2015 to build the dataset. The samples in train_images and train_masks were used to train and valid the Convolutional Neural Network models;  The samples in valid_data were used to test the model's prediction accuracy. Pixels with values 255 and 0 in the mask samples represent the CPIC and background categories. For technical details that used to create the dataset, please refer to https://doi.org/10.1016/j.isprsjprs.2023.10.007.</description><subject>irrigation</subject><subject>remote sensing</subject><subject>semantic segmentation</subject><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>dataset</rsrctype><creationdate>2023</creationdate><recordtype>dataset</recordtype><recordid>eNo1kEtLAzEUhbNQsLZdu80fSHtvMnHSpRZfMCBI98NtHiUyzQyZKNhf75Tq6qzO4TsfY3cIKy0Nrk8-9a5fIYDSG1BXbIamlsJIpW_Y7Th-AgDqezNjHw0lN1IRexq9447KlIWHPvMjDUNMB04pfVHHrU_FZzHE777wmHM8UJkaNvdDN23wmPhjplPsFuw6UDf65V_O2e75abd9Fc37y9v2oRHOoBIayWNdK4sIFDYo1YQqdZAePQQjpQvKkEFjUZtKqkruIdjKogkU_HRsztaX2TOzjcW3Q45Hyj8tQnu20F4stP8W1C-1wVPT</recordid><startdate>20231024</startdate><enddate>20231024</enddate><creator>Xiangyu, Liu</creator><creator>Wei, He</creator><creator>Wenbin, Liu</creator><creator>Guoying, Yin</creator><creator>Hongyan, Zhang</creator><general>Zenodo</general><scope>DYCCY</scope><scope>PQ8</scope><orcidid>https://orcid.org/0000-0002-9699-338X</orcidid></search><sort><creationdate>20231024</creationdate><title>Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil</title><author>Xiangyu, Liu ; Wei, He ; Wenbin, Liu ; Guoying, Yin ; Hongyan, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d813-51ae1773c110af912335925f2e1e0f822df38a818c15842342b0fc4c18fafe003</frbrgroupid><rsrctype>datasets</rsrctype><prefilter>datasets</prefilter><language>eng</language><creationdate>2023</creationdate><topic>irrigation</topic><topic>remote sensing</topic><topic>semantic segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiangyu, Liu</creatorcontrib><creatorcontrib>Wei, He</creatorcontrib><creatorcontrib>Wenbin, Liu</creatorcontrib><creatorcontrib>Guoying, Yin</creatorcontrib><creatorcontrib>Hongyan, Zhang</creatorcontrib><collection>DataCite (Open Access)</collection><collection>DataCite</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiangyu, Liu</au><au>Wei, He</au><au>Wenbin, Liu</au><au>Guoying, Yin</au><au>Hongyan, Zhang</au><format>book</format><genre>unknown</genre><ristype>DATA</ristype><title>Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil</title><date>2023-10-24</date><risdate>2023</risdate><issn>1872-8235</issn><abstract>Center-pivot irrigated cropland (CPIC) is a critical component of irrigation and plays an essential role in improving water use efficiency and increasing food production. To automatically extract the spatial distribution of CPIC in Brazil based on the remote sensing technology, we constructed a training dataset that supports the semantic segmentation models. The dataset were built with the  Landsat 5 , 7 and 8  images as well as the CPIC maps from ANA reference data. We used the Landsat images in 2005, 2010 and 2015 to build the dataset. The samples in train_images and train_masks were used to train and valid the Convolutional Neural Network models;  The samples in valid_data were used to test the model's prediction accuracy. Pixels with values 255 and 0 in the mask samples represent the CPIC and background categories. For technical details that used to create the dataset, please refer to https://doi.org/10.1016/j.isprsjprs.2023.10.007.</abstract><pub>Zenodo</pub><doi>10.5281/zenodo.10035903</doi><orcidid>https://orcid.org/0000-0002-9699-338X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1872-8235
ispartof
issn 1872-8235
language eng
recordid cdi_datacite_primary_10_5281_zenodo_10035903
source ScienceDirect Journals; Elsevier
subjects irrigation
remote sensing
semantic segmentation
title Landsat-based dataset for mapping annual center-pivot irrigated cropland in Brazil
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-datacite&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.au=Xiangyu,%20Liu&rft.date=2023-10-24&rft.issn=1872-8235&rft_id=info:doi/10.5281/zenodo.10035903&rft_dat=%3Cdatacite%3E10_5281_zenodo_10035903%3C/datacite%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d813-51ae1773c110af912335925f2e1e0f822df38a818c15842342b0fc4c18fafe003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true