Loading…
Genomics and proteomics in bioarchaeology - Review
The recent technological developments have allowed to use molecular-biology tools for archaeological studies. This way, some ancient nucleic-acid and peptide remains can be analyzed with an unprecedented resolution power. Thus, the second-generation DNA sequencing technologies have allowed to sequen...
Saved in:
Published in: | Archaeobios 2013-12 (7), p.46 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recent technological developments have allowed to use molecular-biology tools for archaeological studies. This way, some ancient nucleic-acid and peptide remains can be analyzed with an unprecedented resolution power. Thus, the second-generation DNA sequencing technologies have allowed to sequence ancient genomes for the first time, which has revealed interesting facts about the evolution of different species. This way, it has been found that our ancestors inbred with Neandertals and Denisovans, since some current human populations carry part of their genomes. Additionally, the third-generation sequencing of nucleicacids holds the promise of direct ancient-RNA sequencing, without a previous cDNA synthesis, which would open the door to transcriptomics of ancient RNA. The nucleic-acid sequencing is faster and cheaper than the peptide sequencing, generating longer contigs after the assembly of reads. Yet, the former molecules degrade much faster than the latter, and therefore the peptide sequencing has become a powerful tool in bioarchaeology. This way, it has been demonstrated that the birds are indeed feathered dinosaurs. Finally, the prospect of bringing "back to life" some extinct species by means of synthetic genomics, reverse-engineering current genomes and cloning ancient species is certainly exciting and challenging. |
---|---|
ISSN: | 1996-5214 1996-5214 |