Loading…

Resources Allocation in Service Planning Using Discrete-Event Simulation

Objective: Calculate the required personnel and resources needed to fulfill the service promise agreed with the customer. Methods and materials: This paper presents a discrete event simulation (DES) model developed to select and implement a Point of Sale (POS) for a company providing financial produ...

Full description

Saved in:
Bibliographic Details
Published in:Ingeniería y universidad 2021, Vol.25
Main Authors: Becerra-Fernández, Mauricio, Herrera, Milton M., Trejos, Cristian, Romero, Olga R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c251t-7eac3e497aeb218eec88a55e1aab8ecbe0c414a3ad2a07362fddc34b74b21b543
cites
container_end_page
container_issue
container_start_page
container_title Ingeniería y universidad
container_volume 25
creator Becerra-Fernández, Mauricio
Herrera, Milton M.
Trejos, Cristian
Romero, Olga R.
description Objective: Calculate the required personnel and resources needed to fulfill the service promise agreed with the customer. Methods and materials: This paper presents a discrete event simulation (DES) model developed to select and implement a Point of Sale (POS) for a company providing financial products. First, the paper shows the characterization of the system components and times per process. Then, hypothesis testing and goodness-of-fit statistics are estimated. Subsequently, the simulation scenarios assess the times between arrivals and the number of commercial advisers. Results and discussion: This model allows us to assess the allocation of resources to fulfill the service promise, which is that 80 % of customers must be served within one hour or less. This paper provided the service isoquants allowing us to observe the behavior of the performance metrics (service promise fulfillment) among different scenarios. Conclusions: The use of DES techniques allows for the evaluation of the assignment of personnel to achieve the fulfillment of the service promise, including facilities, equipment, and the evaluation of related processes. These methods can be extended to the analysis of resource allocation in the development of other processes, observing the relationship between service quality and operating costs.
doi_str_mv 10.11144/Javeriana.iued25.rasp
format article
fullrecord <record><control><sourceid>proquest_dialn</sourceid><recordid>TN_cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001477343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039086006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-7eac3e497aeb218eec88a55e1aab8ecbe0c414a3ad2a07362fddc34b74b21b543</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsNT-BQn4nLq3bBLwpdRqlYLSy_My2UxlS7qpu0nBf2_aaF9mYDhn5sxHyD2jY8aYlI_vcERvwcHYtljyZOwhHK7IgFPGYp6q_JoMKOMi5oyrWzIKwRZUKpVTLpIBmS8x1K03GKJJVdUGGlu7yLpohf5oDUafFThn3Ve0Caf6bIPx2GA8O6JropXdt9XZc0dutlAFHP31Idm8zNbTebz4eH2bThax4Qlr4hTBCJR5ClhwliGaLIMkQQZQZGgKpEYyCQJKDjQVim_L0ghZpLKTF4kUQ_LU7y0tVA4bffB2D_5H12D1_6x11tt6BxqDnizXlFIm01RI0dkfevvB198thkbvuvddl1gLKnKaKUpVp1K9yvg6BI_byxVG9Zm7vnDXPXd94i5-AWmxfW8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039086006</pqid></control><display><type>article</type><title>Resources Allocation in Service Planning Using Discrete-Event Simulation</title><source>Publicly Available Content Database</source><creator>Becerra-Fernández, Mauricio ; Herrera, Milton M. ; Trejos, Cristian ; Romero, Olga R.</creator><creatorcontrib>Becerra-Fernández, Mauricio ; Herrera, Milton M. ; Trejos, Cristian ; Romero, Olga R.</creatorcontrib><description>Objective: Calculate the required personnel and resources needed to fulfill the service promise agreed with the customer. Methods and materials: This paper presents a discrete event simulation (DES) model developed to select and implement a Point of Sale (POS) for a company providing financial products. First, the paper shows the characterization of the system components and times per process. Then, hypothesis testing and goodness-of-fit statistics are estimated. Subsequently, the simulation scenarios assess the times between arrivals and the number of commercial advisers. Results and discussion: This model allows us to assess the allocation of resources to fulfill the service promise, which is that 80 % of customers must be served within one hour or less. This paper provided the service isoquants allowing us to observe the behavior of the performance metrics (service promise fulfillment) among different scenarios. Conclusions: The use of DES techniques allows for the evaluation of the assignment of personnel to achieve the fulfillment of the service promise, including facilities, equipment, and the evaluation of related processes. These methods can be extended to the analysis of resource allocation in the development of other processes, observing the relationship between service quality and operating costs.</description><identifier>ISSN: 0123-2126</identifier><identifier>EISSN: 2011-2769</identifier><identifier>DOI: 10.11144/Javeriana.iued25.rasp</identifier><language>eng</language><publisher>Bogotá: Editorial Pontificia Universidad Javeriana</publisher><subject>Algorithms ; asignación de recursos ; Case studies ; Costs ; Credit cards ; Customer services ; Customers ; Decision making ; Discrete event simulation ; Discrete event systems ; Financial institutions ; Financial services ; Goodness of fit ; isocuantas ; isoquants ; Lean manufacturing ; líneas de espera ; Order quantity ; Patient satisfaction ; Performance measurement ; Personnel ; planeación de servicios ; Resource allocation ; Scheduling ; service planning ; simulación de eventos discretos ; Simulation ; Statistical tests ; waiting lines</subject><ispartof>Ingeniería y universidad, 2021, Vol.25</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>LICENCIA DE USO: Los documentos a texto completo incluidos en Dialnet son de acceso libre y propiedad de sus autores y/o editores. Por tanto, cualquier acto de reproducción, distribución, comunicación pública y/o transformación total o parcial requiere el consentimiento expreso y escrito de aquéllos. Cualquier enlace al texto completo de estos documentos deberá hacerse a través de la URL oficial de éstos en Dialnet. Más información: https://dialnet.unirioja.es/info/derechosOAI | INTELLECTUAL PROPERTY RIGHTS STATEMENT: Full text documents hosted by Dialnet are protected by copyright and/or related rights. This digital object is accessible without charge, but its use is subject to the licensing conditions set by its authors or editors. Unless expressly stated otherwise in the licensing conditions, you are free to linking, browsing, printing and making a copy for your own personal purposes. All other acts of reproduction and communication to the public are subject to the licensing conditions expressed by editors and authors and require consent from them. Any link to this document should be made using its official URL in Dialnet. More info: https://dialnet.unirioja.es/info/derechosOAI</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c251t-7eac3e497aeb218eec88a55e1aab8ecbe0c414a3ad2a07362fddc34b74b21b543</citedby><orcidid>0000-0001-9259-6670 ; 0000-0003-1060-2198 ; 0000-0002-0766-8391 ; 0000-0003-4983-7277</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3039086006/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3039086006?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Becerra-Fernández, Mauricio</creatorcontrib><creatorcontrib>Herrera, Milton M.</creatorcontrib><creatorcontrib>Trejos, Cristian</creatorcontrib><creatorcontrib>Romero, Olga R.</creatorcontrib><title>Resources Allocation in Service Planning Using Discrete-Event Simulation</title><title>Ingeniería y universidad</title><description>Objective: Calculate the required personnel and resources needed to fulfill the service promise agreed with the customer. Methods and materials: This paper presents a discrete event simulation (DES) model developed to select and implement a Point of Sale (POS) for a company providing financial products. First, the paper shows the characterization of the system components and times per process. Then, hypothesis testing and goodness-of-fit statistics are estimated. Subsequently, the simulation scenarios assess the times between arrivals and the number of commercial advisers. Results and discussion: This model allows us to assess the allocation of resources to fulfill the service promise, which is that 80 % of customers must be served within one hour or less. This paper provided the service isoquants allowing us to observe the behavior of the performance metrics (service promise fulfillment) among different scenarios. Conclusions: The use of DES techniques allows for the evaluation of the assignment of personnel to achieve the fulfillment of the service promise, including facilities, equipment, and the evaluation of related processes. These methods can be extended to the analysis of resource allocation in the development of other processes, observing the relationship between service quality and operating costs.</description><subject>Algorithms</subject><subject>asignación de recursos</subject><subject>Case studies</subject><subject>Costs</subject><subject>Credit cards</subject><subject>Customer services</subject><subject>Customers</subject><subject>Decision making</subject><subject>Discrete event simulation</subject><subject>Discrete event systems</subject><subject>Financial institutions</subject><subject>Financial services</subject><subject>Goodness of fit</subject><subject>isocuantas</subject><subject>isoquants</subject><subject>Lean manufacturing</subject><subject>líneas de espera</subject><subject>Order quantity</subject><subject>Patient satisfaction</subject><subject>Performance measurement</subject><subject>Personnel</subject><subject>planeación de servicios</subject><subject>Resource allocation</subject><subject>Scheduling</subject><subject>service planning</subject><subject>simulación de eventos discretos</subject><subject>Simulation</subject><subject>Statistical tests</subject><subject>waiting lines</subject><issn>0123-2126</issn><issn>2011-2769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kFtLw0AQhRdRsNT-BQn4nLq3bBLwpdRqlYLSy_My2UxlS7qpu0nBf2_aaF9mYDhn5sxHyD2jY8aYlI_vcERvwcHYtljyZOwhHK7IgFPGYp6q_JoMKOMi5oyrWzIKwRZUKpVTLpIBmS8x1K03GKJJVdUGGlu7yLpohf5oDUafFThn3Ve0Caf6bIPx2GA8O6JropXdt9XZc0dutlAFHP31Idm8zNbTebz4eH2bThax4Qlr4hTBCJR5ClhwliGaLIMkQQZQZGgKpEYyCQJKDjQVim_L0ghZpLKTF4kUQ_LU7y0tVA4bffB2D_5H12D1_6x11tt6BxqDnizXlFIm01RI0dkfevvB198thkbvuvddl1gLKnKaKUpVp1K9yvg6BI_byxVG9Zm7vnDXPXd94i5-AWmxfW8</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Becerra-Fernández, Mauricio</creator><creator>Herrera, Milton M.</creator><creator>Trejos, Cristian</creator><creator>Romero, Olga R.</creator><general>Editorial Pontificia Universidad Javeriana</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>AGMXS</scope><scope>FKZ</scope><orcidid>https://orcid.org/0000-0001-9259-6670</orcidid><orcidid>https://orcid.org/0000-0003-1060-2198</orcidid><orcidid>https://orcid.org/0000-0002-0766-8391</orcidid><orcidid>https://orcid.org/0000-0003-4983-7277</orcidid></search><sort><creationdate>2021</creationdate><title>Resources Allocation in Service Planning Using Discrete-Event Simulation</title><author>Becerra-Fernández, Mauricio ; Herrera, Milton M. ; Trejos, Cristian ; Romero, Olga R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-7eac3e497aeb218eec88a55e1aab8ecbe0c414a3ad2a07362fddc34b74b21b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>asignación de recursos</topic><topic>Case studies</topic><topic>Costs</topic><topic>Credit cards</topic><topic>Customer services</topic><topic>Customers</topic><topic>Decision making</topic><topic>Discrete event simulation</topic><topic>Discrete event systems</topic><topic>Financial institutions</topic><topic>Financial services</topic><topic>Goodness of fit</topic><topic>isocuantas</topic><topic>isoquants</topic><topic>Lean manufacturing</topic><topic>líneas de espera</topic><topic>Order quantity</topic><topic>Patient satisfaction</topic><topic>Performance measurement</topic><topic>Personnel</topic><topic>planeación de servicios</topic><topic>Resource allocation</topic><topic>Scheduling</topic><topic>service planning</topic><topic>simulación de eventos discretos</topic><topic>Simulation</topic><topic>Statistical tests</topic><topic>waiting lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becerra-Fernández, Mauricio</creatorcontrib><creatorcontrib>Herrera, Milton M.</creatorcontrib><creatorcontrib>Trejos, Cristian</creatorcontrib><creatorcontrib>Romero, Olga R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Dialnet (Open Access Full Text)</collection><collection>Dialnet</collection><jtitle>Ingeniería y universidad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becerra-Fernández, Mauricio</au><au>Herrera, Milton M.</au><au>Trejos, Cristian</au><au>Romero, Olga R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resources Allocation in Service Planning Using Discrete-Event Simulation</atitle><jtitle>Ingeniería y universidad</jtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issn>0123-2126</issn><eissn>2011-2769</eissn><abstract>Objective: Calculate the required personnel and resources needed to fulfill the service promise agreed with the customer. Methods and materials: This paper presents a discrete event simulation (DES) model developed to select and implement a Point of Sale (POS) for a company providing financial products. First, the paper shows the characterization of the system components and times per process. Then, hypothesis testing and goodness-of-fit statistics are estimated. Subsequently, the simulation scenarios assess the times between arrivals and the number of commercial advisers. Results and discussion: This model allows us to assess the allocation of resources to fulfill the service promise, which is that 80 % of customers must be served within one hour or less. This paper provided the service isoquants allowing us to observe the behavior of the performance metrics (service promise fulfillment) among different scenarios. Conclusions: The use of DES techniques allows for the evaluation of the assignment of personnel to achieve the fulfillment of the service promise, including facilities, equipment, and the evaluation of related processes. These methods can be extended to the analysis of resource allocation in the development of other processes, observing the relationship between service quality and operating costs.</abstract><cop>Bogotá</cop><pub>Editorial Pontificia Universidad Javeriana</pub><doi>10.11144/Javeriana.iued25.rasp</doi><orcidid>https://orcid.org/0000-0001-9259-6670</orcidid><orcidid>https://orcid.org/0000-0003-1060-2198</orcidid><orcidid>https://orcid.org/0000-0002-0766-8391</orcidid><orcidid>https://orcid.org/0000-0003-4983-7277</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0123-2126
ispartof Ingeniería y universidad, 2021, Vol.25
issn 0123-2126
2011-2769
language eng
recordid cdi_dialnet_primary_oai_dialnet_unirioja_es_ART0001477343
source Publicly Available Content Database
subjects Algorithms
asignación de recursos
Case studies
Costs
Credit cards
Customer services
Customers
Decision making
Discrete event simulation
Discrete event systems
Financial institutions
Financial services
Goodness of fit
isocuantas
isoquants
Lean manufacturing
líneas de espera
Order quantity
Patient satisfaction
Performance measurement
Personnel
planeación de servicios
Resource allocation
Scheduling
service planning
simulación de eventos discretos
Simulation
Statistical tests
waiting lines
title Resources Allocation in Service Planning Using Discrete-Event Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_dialn&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resources%20Allocation%20in%20Service%20Planning%20Using%20Discrete-Event%20Simulation&rft.jtitle=Ingenier%C3%ADa%20y%20universidad&rft.au=Becerra-Fern%C3%A1ndez,%20Mauricio&rft.date=2021&rft.volume=25&rft.issn=0123-2126&rft.eissn=2011-2769&rft_id=info:doi/10.11144/Javeriana.iued25.rasp&rft_dat=%3Cproquest_dialn%3E3039086006%3C/proquest_dialn%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-7eac3e497aeb218eec88a55e1aab8ecbe0c414a3ad2a07362fddc34b74b21b543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3039086006&rft_id=info:pmid/&rfr_iscdi=true