Loading…
Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder
In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-press...
Saved in:
Published in: | Actuators 2023-10, Vol.12 (10), p.369 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-385487cc8c0e9ae6f6427bf75d22d2d2a3aeebad6593c99323eff15e2cf9e23a3 |
container_end_page | |
container_issue | 10 |
container_start_page | 369 |
container_title | Actuators |
container_volume | 12 |
creator | Yang, Jian Zhang, Lei Zhang, Jun Wang, Hao Zhang, Dong Luo, Yuanxin Wang, Yongqin |
description | In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-pressure extrusion cylinder. Comparative analysis of an ultrahigh-pressure extrusion structure was carried out. The mathematical optimization model is established based on the mechanical model, and the ultimate bearing capacities of the schemes are compared. Additionally, the winding mode and the number of core layers of the extrusion cylinder are compared and analyzed, which provides a theoretical basis for the parameter design of the steel-wire-winding ultrahigh-pressure extrusion cylinder. This work holds good theoretical significance and practical value for the promotion and application of ultrahigh-pressure hydrostatic extrusion technology. |
doi_str_mv | 10.3390/act12100369 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_000272eaf02f4c4e93f9d38c62443758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771910838</galeid><doaj_id>oai_doaj_org_article_000272eaf02f4c4e93f9d38c62443758</doaj_id><sourcerecordid>A771910838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-385487cc8c0e9ae6f6427bf75d22d2d2a3aeebad6593c99323eff15e2cf9e23a3</originalsourceid><addsrcrecordid>eNpNkd9LAzEMxw9RcMw9-Q8c-Cg32-Z-tI9jTjcQFOaeS9dLt47bdbY3cP-9nSey5CEhJB--SZLknpIxgCBPSneUUUKgFFfJgJGqzAhnxfVFfpuMQtiRaIICJzBIlktsUHfWtakz6TMGu2nTpd7iHlPjfKradNV0Xm3tZpt9eAzh6DGdn2rvQqc6q9PZd-eP4QyYnhrb1ujvkhujmoCjvzhMVi-zz-k8e3t_XUwnb5mGknYZ8CLnldZcExQKS1PmrFqbqqgZq6MrUIhrVZeFAC0EMEBjaIFMG4EMFAyTRc-tndrJg7d75U_SKSt_C85vpPJRYoMybswqhsoQZnKdowAjauC6ZHkOVcEj66FnHbz7OmLo5M4dfRvlS8Y5YzkXIGLXuO_aqAi1rXHxNDp6jXurXYvGxvqkqqighMMZ-9gP6Hiv4NH8y6REnr8mL74GPzcTiSM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2882248939</pqid></control><display><type>article</type><title>Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder</title><source>Publicly Available Content (ProQuest)</source><creator>Yang, Jian ; Zhang, Lei ; Zhang, Jun ; Wang, Hao ; Zhang, Dong ; Luo, Yuanxin ; Wang, Yongqin</creator><creatorcontrib>Yang, Jian ; Zhang, Lei ; Zhang, Jun ; Wang, Hao ; Zhang, Dong ; Luo, Yuanxin ; Wang, Yongqin</creatorcontrib><description>In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-pressure extrusion cylinder. Comparative analysis of an ultrahigh-pressure extrusion structure was carried out. The mathematical optimization model is established based on the mechanical model, and the ultimate bearing capacities of the schemes are compared. Additionally, the winding mode and the number of core layers of the extrusion cylinder are compared and analyzed, which provides a theoretical basis for the parameter design of the steel-wire-winding ultrahigh-pressure extrusion cylinder. This work holds good theoretical significance and practical value for the promotion and application of ultrahigh-pressure hydrostatic extrusion technology.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act12100369</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aluminum ; Comparative analysis ; Cylinders ; Deformation ; Design parameters ; Finite element method ; Hydrostatic extrusion ; Manufacturing ; Mathematical optimization ; mathematical optimization model ; multilayer combined extrusion cylinder ; Multilayers ; Optimization models ; Shear strength ; Steel wire ; steel-wire-winding extrusion cylinder ; Stress analysis ; Stress state ; ultrahigh-pressure hydrostatic extrusion cylinder ; Winding</subject><ispartof>Actuators, 2023-10, Vol.12 (10), p.369</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-385487cc8c0e9ae6f6427bf75d22d2d2a3aeebad6593c99323eff15e2cf9e23a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2882248939/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2882248939?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Luo, Yuanxin</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><title>Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder</title><title>Actuators</title><description>In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-pressure extrusion cylinder. Comparative analysis of an ultrahigh-pressure extrusion structure was carried out. The mathematical optimization model is established based on the mechanical model, and the ultimate bearing capacities of the schemes are compared. Additionally, the winding mode and the number of core layers of the extrusion cylinder are compared and analyzed, which provides a theoretical basis for the parameter design of the steel-wire-winding ultrahigh-pressure extrusion cylinder. This work holds good theoretical significance and practical value for the promotion and application of ultrahigh-pressure hydrostatic extrusion technology.</description><subject>Aluminum</subject><subject>Comparative analysis</subject><subject>Cylinders</subject><subject>Deformation</subject><subject>Design parameters</subject><subject>Finite element method</subject><subject>Hydrostatic extrusion</subject><subject>Manufacturing</subject><subject>Mathematical optimization</subject><subject>mathematical optimization model</subject><subject>multilayer combined extrusion cylinder</subject><subject>Multilayers</subject><subject>Optimization models</subject><subject>Shear strength</subject><subject>Steel wire</subject><subject>steel-wire-winding extrusion cylinder</subject><subject>Stress analysis</subject><subject>Stress state</subject><subject>ultrahigh-pressure hydrostatic extrusion cylinder</subject><subject>Winding</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd9LAzEMxw9RcMw9-Q8c-Cg32-Z-tI9jTjcQFOaeS9dLt47bdbY3cP-9nSey5CEhJB--SZLknpIxgCBPSneUUUKgFFfJgJGqzAhnxfVFfpuMQtiRaIICJzBIlktsUHfWtakz6TMGu2nTpd7iHlPjfKradNV0Xm3tZpt9eAzh6DGdn2rvQqc6q9PZd-eP4QyYnhrb1ujvkhujmoCjvzhMVi-zz-k8e3t_XUwnb5mGknYZ8CLnldZcExQKS1PmrFqbqqgZq6MrUIhrVZeFAC0EMEBjaIFMG4EMFAyTRc-tndrJg7d75U_SKSt_C85vpPJRYoMybswqhsoQZnKdowAjauC6ZHkOVcEj66FnHbz7OmLo5M4dfRvlS8Y5YzkXIGLXuO_aqAi1rXHxNDp6jXurXYvGxvqkqqighMMZ-9gP6Hiv4NH8y6REnr8mL74GPzcTiSM</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Yang, Jian</creator><creator>Zhang, Lei</creator><creator>Zhang, Jun</creator><creator>Wang, Hao</creator><creator>Zhang, Dong</creator><creator>Luo, Yuanxin</creator><creator>Wang, Yongqin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20231001</creationdate><title>Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder</title><author>Yang, Jian ; Zhang, Lei ; Zhang, Jun ; Wang, Hao ; Zhang, Dong ; Luo, Yuanxin ; Wang, Yongqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-385487cc8c0e9ae6f6427bf75d22d2d2a3aeebad6593c99323eff15e2cf9e23a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum</topic><topic>Comparative analysis</topic><topic>Cylinders</topic><topic>Deformation</topic><topic>Design parameters</topic><topic>Finite element method</topic><topic>Hydrostatic extrusion</topic><topic>Manufacturing</topic><topic>Mathematical optimization</topic><topic>mathematical optimization model</topic><topic>multilayer combined extrusion cylinder</topic><topic>Multilayers</topic><topic>Optimization models</topic><topic>Shear strength</topic><topic>Steel wire</topic><topic>steel-wire-winding extrusion cylinder</topic><topic>Stress analysis</topic><topic>Stress state</topic><topic>ultrahigh-pressure hydrostatic extrusion cylinder</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Luo, Yuanxin</creatorcontrib><creatorcontrib>Wang, Yongqin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jian</au><au>Zhang, Lei</au><au>Zhang, Jun</au><au>Wang, Hao</au><au>Zhang, Dong</au><au>Luo, Yuanxin</au><au>Wang, Yongqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder</atitle><jtitle>Actuators</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>10</issue><spage>369</spage><pages>369-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>In this study, the mechanical models of a multilayer combined extrusion cylinder and a steel-wire-winding extrusion cylinder were established and compared using a finite element simulation and existing experimental cases. This work provides theoretical support for the selection of an ultrahigh-pressure extrusion cylinder. Comparative analysis of an ultrahigh-pressure extrusion structure was carried out. The mathematical optimization model is established based on the mechanical model, and the ultimate bearing capacities of the schemes are compared. Additionally, the winding mode and the number of core layers of the extrusion cylinder are compared and analyzed, which provides a theoretical basis for the parameter design of the steel-wire-winding ultrahigh-pressure extrusion cylinder. This work holds good theoretical significance and practical value for the promotion and application of ultrahigh-pressure hydrostatic extrusion technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act12100369</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-0825 |
ispartof | Actuators, 2023-10, Vol.12 (10), p.369 |
issn | 2076-0825 2076-0825 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_000272eaf02f4c4e93f9d38c62443758 |
source | Publicly Available Content (ProQuest) |
subjects | Aluminum Comparative analysis Cylinders Deformation Design parameters Finite element method Hydrostatic extrusion Manufacturing Mathematical optimization mathematical optimization model multilayer combined extrusion cylinder Multilayers Optimization models Shear strength Steel wire steel-wire-winding extrusion cylinder Stress analysis Stress state ultrahigh-pressure hydrostatic extrusion cylinder Winding |
title | Selection of Design Scheme for an Ultrahigh-Pressure Hydrostatic Extrusion Cylinder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Design%20Scheme%20for%20an%20Ultrahigh-Pressure%20Hydrostatic%20Extrusion%20Cylinder&rft.jtitle=Actuators&rft.au=Yang,%20Jian&rft.date=2023-10-01&rft.volume=12&rft.issue=10&rft.spage=369&rft.pages=369-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act12100369&rft_dat=%3Cgale_doaj_%3EA771910838%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-385487cc8c0e9ae6f6427bf75d22d2d2a3aeebad6593c99323eff15e2cf9e23a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2882248939&rft_id=info:pmid/&rft_galeid=A771910838&rfr_iscdi=true |