Loading…
In vivo and in vitro toxicity of nanogold conjugated snake venom protein toxin GNP-NKCT1
Research on nanoparticles has created interest among the biomedical scientists. Nanoparticle conjugation aims to target drug delivery, increase drug efficacy and imaging for better diagnosis. Toxicity profile of the nanoconjugated molecules has not been studied well. In this communication, the toxic...
Saved in:
Published in: | Toxicology reports 2014-01, Vol.1 (C), p.74-84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Research on nanoparticles has created interest among the biomedical scientists. Nanoparticle conjugation aims to target drug delivery, increase drug efficacy and imaging for better diagnosis. Toxicity profile of the nanoconjugated molecules has not been studied well. In this communication, the toxicity profile of snake venom cytotoxin (NKCT1), an antileukemic protein toxin, was evaluated after its conjugation with gold nanoparticle (GNP-NKCT1). Gold nanoparticle conjugation with NKCT1 was done with NaBH
reduction method. The conjugated product GNP-NKCT1 was found less toxic than NKCT1 on isolated rat lymphocyte, mice peritoneal macrophage, in culture, which was evident from the MTT/Trypan blue assay. Peritoneal mast cell degranulation was in the order of NKCT1 > GNP-NKCT1. The
cardiotoxicity and neurotoxicity were increased in case of NKCT1 than GNP-NKCT1. On isolated kidney tissue, NKCT1 released significant amount of ALP and γ-GT than GNP-NKCT1. Gold nanoconjugation with NKCT1 also reduced the lethal activity in mice.
acute/sub-chronic toxicity studies in mice showed significant increase in molecular markers due to NKCT1 treatment, which was reduced by gold nanoconjugation. Histopathology study showed decreased toxic effect of NKCT1 in kidney tissue after GNP conjugation. The present study confirmed that GNP conjugation significantly decreased the toxicity profile of NKCT1. Further studies are in progress to establish the molecular mechanism of GNP induced toxicity reduction. |
---|---|
ISSN: | 2214-7500 2214-7500 |
DOI: | 10.1016/j.toxrep.2014.04.007 |