Loading…

The Harris Extended Bilal Distribution with Applications in Hydrology and Quality Control

In this research work, a new three-parameter lifetime distribution is introduced and studied. It is called the Harris extended Bilal distribution due to its construction from a mixture of the famous Bilal and Harris distributions, resulting from a branching process. The basic properties, such as the...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2023-03, Vol.3 (1), p.221-242
Main Authors: Maya, Radhakumari, Irshad, Muhammed Rasheed, Ahammed, Muhammed, Chesneau, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this research work, a new three-parameter lifetime distribution is introduced and studied. It is called the Harris extended Bilal distribution due to its construction from a mixture of the famous Bilal and Harris distributions, resulting from a branching process. The basic properties, such as the moment generating function, moments, quantile function, and Rényi entropy, are discussed. We show that the hazard rate function has ideal features for modeling increasing, upside-down bathtub, and roller-coaster data sets. In a second part, the Harris extended Bilal model is investigated from a statistical viewpoint. The maximum likelihood estimation is used to estimate the parameters, and a simulation study is carried out. The flexibility of the proposed model in a hydrological data analysis scenario is demonstrated using two practical data sets and compared with important competing models. After that, we establish an acceptance sampling plan that takes advantage of all of the features of the Harris extended Bilal model. The operating characteristic values, the minimum sample size that corresponds to the maximum possible defects, and the minimum ratios of lifetime associated with the producer’s risk are discussed.
ISSN:2673-9909
2673-9909
DOI:10.3390/appliedmath3010013