Loading…
Investigation of Microstructure and Magnetic Properties of CH4 Heat Treated Sr-Hexaferrite Powders during Re-Calcination Process
The microstructure and magnetic properties of methane (CH4) heat-treated Sr-hexaferrite powders during the re-calcination process were investigated and compared with the magnetic properties of conventionally synthesized Sr-hexaferrite powder. Gradual changes in the magnetic behavior of the produced...
Saved in:
Published in: | Magnetochemistry 2023-04, Vol.9 (4), p.103 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The microstructure and magnetic properties of methane (CH4) heat-treated Sr-hexaferrite powders during the re-calcination process were investigated and compared with the magnetic properties of conventionally synthesized Sr-hexaferrite powder. Gradual changes in the magnetic behavior of the produced powder in each re-calcination stage were investigated using magnetization curves obtained from the vibration sample magnetometry (VSM) technique. First, the initial Sr-hexaferrite powder was prepared by the conventional route. Then the powder was heat treated in a dynamic CH4 atmosphere in previously optimized conditions (temperature: 950 °C, gas flow rate:15 cc min−1 and time: 30 min), and finally, re-calcined in various temperatures from 200 to 1200 °C. By investigating the hysteresis loops, we found the transition temperature of soft to hard magnetic behavior to be 700 °C. The maximum ratio Mr/Ms was obtained at temperatures of 800–1100 °C. At 1100 °C, and despite the Sr-hexaferrite single phase, the magnetic behavior showed a multiphase behavior that was demonstrated by a kink in the hysteresis loop. Uniform magnetic behavior was observed only at 900 °C and 1000 °C. Although the ratio Mr/Ms was almost the same at these temperatures, the values of Mr and Ms at 1000 °C were almost double of 900 °C. At 1000 °C, the second quadrant of hysteresis curve had the maximum area. Therefore, 1000 °C was the optimum temperature for re-calcination after CH4 gas heat treatment in the optimized conditions. Due to the presence of a small amount of hematite soft phase at 1000 °C, the most probable reason for the exclusive properties of the optimized product may be the exchange coupling phenomenon between the hard Sr-hexaferrite phase and the impurity of the soft hematite phase. |
---|---|
ISSN: | 2312-7481 2312-7481 |
DOI: | 10.3390/magnetochemistry9040103 |