Loading…
Directional Signage Location Optimization of Subway Station Based on Big Data
The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.12354-12363 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3 |
container_end_page | 12363 |
container_issue | |
container_start_page | 12354 |
container_title | IEEE access |
container_volume | 8 |
creator | Tu, Qun Zhang, Zhenji Zhang, Qianqian |
description | The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%. |
doi_str_mv | 10.1109/ACCESS.2019.2963310 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8946635</ieee_id><doaj_id>oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4</doaj_id><sourcerecordid>2454742673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</originalsourceid><addsrcrecordid>eNpNkVFLwzAUhYsoOOZ-wV4KPnfmJmmaPM5u6mCyh-pzSNOkZGzLTDtk_npbO4b35d4c7jkX8kXRFNAMAImneZ4vi2KGEYgZFowQQDfRCAMTCUkJu_0330eTptmirngnpdkoel-4YHTr_EHt4sLVB1WbeO216qV4c2zd3v0MD2_j4lR-q3NctIPyrBpTxf3g6nihWvUQ3Vm1a8zk0sfR58vyI39L1pvXVT5fJ5oi3ibYAgicYio0M1yXZcqrlJcgkMUmI5xwzHhGKDAFOs20NsLaDCPLDOVIWDKOVkNu5dVWHoPbq3CWXjn5J_hQSxVap3dGIkS4tgJjhQTVCJSwgBEzhpYAUNEu63HIOgb_dTJNK7f-FLrvaCSmKc0oZhnptsiwpYNvmmDs9Sog2WOQAwbZY5AXDJ1rOricMebq4IIy1uH4Bfu7gQ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454742673</pqid></control><display><type>article</type><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><source>IEEE Xplore Open Access Journals</source><creator>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</creator><creatorcontrib>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</creatorcontrib><description>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2963310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Big Data ; Mathematical model ; Optimization ; Particle swarm optimization ; PSO algorithm ; Public transportation ; signage location optimization ; Signs ; Solid modeling ; subway station ; Subway stations</subject><ispartof>IEEE access, 2020, Vol.8, p.12354-12363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</citedby><cites>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</cites><orcidid>0000-0002-3135-8254 ; 0000-0002-2738-7749 ; 0000-0001-5513-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8946635$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tu, Qun</creatorcontrib><creatorcontrib>Zhang, Zhenji</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Big Data</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>PSO algorithm</subject><subject>Public transportation</subject><subject>signage location optimization</subject><subject>Signs</subject><subject>Solid modeling</subject><subject>subway station</subject><subject>Subway stations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLwzAUhYsoOOZ-wV4KPnfmJmmaPM5u6mCyh-pzSNOkZGzLTDtk_npbO4b35d4c7jkX8kXRFNAMAImneZ4vi2KGEYgZFowQQDfRCAMTCUkJu_0330eTptmirngnpdkoel-4YHTr_EHt4sLVB1WbeO216qV4c2zd3v0MD2_j4lR-q3NctIPyrBpTxf3g6nihWvUQ3Vm1a8zk0sfR58vyI39L1pvXVT5fJ5oi3ibYAgicYio0M1yXZcqrlJcgkMUmI5xwzHhGKDAFOs20NsLaDCPLDOVIWDKOVkNu5dVWHoPbq3CWXjn5J_hQSxVap3dGIkS4tgJjhQTVCJSwgBEzhpYAUNEu63HIOgb_dTJNK7f-FLrvaCSmKc0oZhnptsiwpYNvmmDs9Sog2WOQAwbZY5AXDJ1rOricMebq4IIy1uH4Bfu7gQ0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tu, Qun</creator><creator>Zhang, Zhenji</creator><creator>Zhang, Qianqian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3135-8254</orcidid><orcidid>https://orcid.org/0000-0002-2738-7749</orcidid><orcidid>https://orcid.org/0000-0001-5513-4485</orcidid></search><sort><creationdate>2020</creationdate><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><author>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Big Data</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>PSO algorithm</topic><topic>Public transportation</topic><topic>signage location optimization</topic><topic>Signs</topic><topic>Solid modeling</topic><topic>subway station</topic><topic>Subway stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Qun</creatorcontrib><creatorcontrib>Zhang, Zhenji</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Qun</au><au>Zhang, Zhenji</au><au>Zhang, Qianqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Signage Location Optimization of Subway Station Based on Big Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12354</spage><epage>12363</epage><pages>12354-12363</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2963310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3135-8254</orcidid><orcidid>https://orcid.org/0000-0002-2738-7749</orcidid><orcidid>https://orcid.org/0000-0001-5513-4485</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.12354-12363 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Analytical models Big Data Mathematical model Optimization Particle swarm optimization PSO algorithm Public transportation signage location optimization Signs Solid modeling subway station Subway stations |
title | Directional Signage Location Optimization of Subway Station Based on Big Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Signage%20Location%20Optimization%20of%20Subway%20Station%20Based%20on%20Big%20Data&rft.jtitle=IEEE%20access&rft.au=Tu,%20Qun&rft.date=2020&rft.volume=8&rft.spage=12354&rft.epage=12363&rft.pages=12354-12363&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2963310&rft_dat=%3Cproquest_doaj_%3E2454742673%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454742673&rft_id=info:pmid/&rft_ieee_id=8946635&rfr_iscdi=true |