Loading…

Directional Signage Location Optimization of Subway Station Based on Big Data

The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.12354-12363
Main Authors: Tu, Qun, Zhang, Zhenji, Zhang, Qianqian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3
cites cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3
container_end_page 12363
container_issue
container_start_page 12354
container_title IEEE access
container_volume 8
creator Tu, Qun
Zhang, Zhenji
Zhang, Qianqian
description The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.
doi_str_mv 10.1109/ACCESS.2019.2963310
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8946635</ieee_id><doaj_id>oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4</doaj_id><sourcerecordid>2454742673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</originalsourceid><addsrcrecordid>eNpNkVFLwzAUhYsoOOZ-wV4KPnfmJmmaPM5u6mCyh-pzSNOkZGzLTDtk_npbO4b35d4c7jkX8kXRFNAMAImneZ4vi2KGEYgZFowQQDfRCAMTCUkJu_0330eTptmirngnpdkoel-4YHTr_EHt4sLVB1WbeO216qV4c2zd3v0MD2_j4lR-q3NctIPyrBpTxf3g6nihWvUQ3Vm1a8zk0sfR58vyI39L1pvXVT5fJ5oi3ibYAgicYio0M1yXZcqrlJcgkMUmI5xwzHhGKDAFOs20NsLaDCPLDOVIWDKOVkNu5dVWHoPbq3CWXjn5J_hQSxVap3dGIkS4tgJjhQTVCJSwgBEzhpYAUNEu63HIOgb_dTJNK7f-FLrvaCSmKc0oZhnptsiwpYNvmmDs9Sog2WOQAwbZY5AXDJ1rOricMebq4IIy1uH4Bfu7gQ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454742673</pqid></control><display><type>article</type><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><source>IEEE Xplore Open Access Journals</source><creator>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</creator><creatorcontrib>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</creatorcontrib><description>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2963310</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Analytical models ; Big Data ; Mathematical model ; Optimization ; Particle swarm optimization ; PSO algorithm ; Public transportation ; signage location optimization ; Signs ; Solid modeling ; subway station ; Subway stations</subject><ispartof>IEEE access, 2020, Vol.8, p.12354-12363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</citedby><cites>FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</cites><orcidid>0000-0002-3135-8254 ; 0000-0002-2738-7749 ; 0000-0001-5513-4485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8946635$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Tu, Qun</creatorcontrib><creatorcontrib>Zhang, Zhenji</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</description><subject>Algorithms</subject><subject>Analytical models</subject><subject>Big Data</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>PSO algorithm</subject><subject>Public transportation</subject><subject>signage location optimization</subject><subject>Signs</subject><subject>Solid modeling</subject><subject>subway station</subject><subject>Subway stations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFLwzAUhYsoOOZ-wV4KPnfmJmmaPM5u6mCyh-pzSNOkZGzLTDtk_npbO4b35d4c7jkX8kXRFNAMAImneZ4vi2KGEYgZFowQQDfRCAMTCUkJu_0330eTptmirngnpdkoel-4YHTr_EHt4sLVB1WbeO216qV4c2zd3v0MD2_j4lR-q3NctIPyrBpTxf3g6nihWvUQ3Vm1a8zk0sfR58vyI39L1pvXVT5fJ5oi3ibYAgicYio0M1yXZcqrlJcgkMUmI5xwzHhGKDAFOs20NsLaDCPLDOVIWDKOVkNu5dVWHoPbq3CWXjn5J_hQSxVap3dGIkS4tgJjhQTVCJSwgBEzhpYAUNEu63HIOgb_dTJNK7f-FLrvaCSmKc0oZhnptsiwpYNvmmDs9Sog2WOQAwbZY5AXDJ1rOricMebq4IIy1uH4Bfu7gQ0</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tu, Qun</creator><creator>Zhang, Zhenji</creator><creator>Zhang, Qianqian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3135-8254</orcidid><orcidid>https://orcid.org/0000-0002-2738-7749</orcidid><orcidid>https://orcid.org/0000-0001-5513-4485</orcidid></search><sort><creationdate>2020</creationdate><title>Directional Signage Location Optimization of Subway Station Based on Big Data</title><author>Tu, Qun ; Zhang, Zhenji ; Zhang, Qianqian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analytical models</topic><topic>Big Data</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>PSO algorithm</topic><topic>Public transportation</topic><topic>signage location optimization</topic><topic>Signs</topic><topic>Solid modeling</topic><topic>subway station</topic><topic>Subway stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Qun</creatorcontrib><creatorcontrib>Zhang, Zhenji</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Qun</au><au>Zhang, Zhenji</au><au>Zhang, Qianqian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional Signage Location Optimization of Subway Station Based on Big Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12354</spage><epage>12363</epage><pages>12354-12363</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The imperfection of the guide signs in the subway will lead to many difficulties for passengers, which directly affects the operation efficiency of subway stations. In this paper, we use big data to analyze the problem of signages in Beijing subway, and propose the optimization model of signages in subway stations based on particle swarm optimization algorithm. The experimental results of Dongzhimen subway station in Beijing show that the model has strong robustness in optimization, and the global best position can be found 100%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2963310</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3135-8254</orcidid><orcidid>https://orcid.org/0000-0002-2738-7749</orcidid><orcidid>https://orcid.org/0000-0001-5513-4485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.12354-12363
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0038cf922a094c01a9f1206ee4b111d4
source IEEE Xplore Open Access Journals
subjects Algorithms
Analytical models
Big Data
Mathematical model
Optimization
Particle swarm optimization
PSO algorithm
Public transportation
signage location optimization
Signs
Solid modeling
subway station
Subway stations
title Directional Signage Location Optimization of Subway Station Based on Big Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20Signage%20Location%20Optimization%20of%20Subway%20Station%20Based%20on%20Big%20Data&rft.jtitle=IEEE%20access&rft.au=Tu,%20Qun&rft.date=2020&rft.volume=8&rft.spage=12354&rft.epage=12363&rft.pages=12354-12363&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2963310&rft_dat=%3Cproquest_doaj_%3E2454742673%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-2f11925249c6e8cbb58d58b190f2e7383826873416a1c57cce9ff720f6e4809f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454742673&rft_id=info:pmid/&rft_ieee_id=8946635&rfr_iscdi=true