Loading…

Schistosoma mansoni SmKI-1 or Its C-Terminal Fragment Induces Partial Protection Against S. mansoni Infection in Mice

Current schistosomiasis control strategies are mainly based on chemotherapy, but the development of a vaccine against this parasitic disease would contribute to a long-lasting decrease in disease spectrum and transmission. When it comes to vaccine candidates, several genes encoding Schistosoma manso...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in immunology 2018-07, Vol.9, p.1762-1762
Main Authors: Morais, Suellen B., Figueiredo, Barbara C., Assis, Natan R. G., Homan, Jane, Mambelli, Fábio S., Bicalho, Rodrigo M., Souza, Cláudia, Martins, Vicente P., Pinheiro, Carina S., Oliveira, Sergio C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current schistosomiasis control strategies are mainly based on chemotherapy, but the development of a vaccine against this parasitic disease would contribute to a long-lasting decrease in disease spectrum and transmission. When it comes to vaccine candidates, several genes encoding Schistosoma mansoni proteins expressed at the mammalian host-parasite interface have been tested. Among the most promising molecules are the proteins present on the tegument and digestive tract of the parasite. In this study, we evaluate the potential of SmKI-1, the first Kunitz-type protease inhibitor functionally characterized in S. mansoni, as a vaccine candidate. Bioinformatic analysis points to the C-terminal fragment as the main region of the molecule responsible for the development of a potential protective immune response induced by SmKI-1. Therefore, for the vaccine formulations, we produced the recombinant (r) SmKI-1 and two different fragments, its Kunitz (KI) domain and its C-terminal tail. First, we demonstrate that mice immunized with recombinant SmKI-1 (rSmKI-1) or its fragments, formulated with Freund's adjuvant, induced the production of IgG-specific antibodies. Further, all vaccine formulations tested here also induced a Th1-type of immune response, as suggested by the production of IFN-γ and TNF-α by protein-stimulated cultured splenocytes. However, the protective effect conferred by vaccination was only observed in groups which received rSmKI-1 or C-terminal domain vaccines. Mice administered with rSmKI-1 demonstrated reduction of 47% in worm burden, 36% in egg number in mouse livers, and 33% in area of liver granulomas. Additionally, mice injected with C-terminal domain showed reduction of 28% in worm burden, 38% in egg number in liver, and 25% in area of liver granulomas. In contrast, KI domain immunization was unable to reduce worm burden and ameliorate liver pathology after challenge infection. Taken together, our data demonstrated that SmKI-1 is a potential candidate for use in a vaccine to control schistosomiasis, and its C-terminal tail seems to be the main region of the molecule responsible for protection conferred by this antigen.
ISSN:1664-3224
1664-3224
DOI:10.3389/fimmu.2018.01762