Loading…

Poultry litter physiochemical characterization based on production conditions for circular systems

Poultry litter is a useful product as a fertilizer, energy feedstock for thermochemical conversion, and a precursor for synthesis of adsorbents and catalysts. Detailed characterization of baseline properties is necessary for enhanced environmental and economic utilization of this valuable resource....

Full description

Saved in:
Bibliographic Details
Published in:Bioresources 2023-05, Vol.18 (2), p.3961-3977
Main Authors: Katuwal, Sheela, Rafsan, Nur-Al-Sarah, Ashworth, Amanda J., Kolar, Praveen
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poultry litter is a useful product as a fertilizer, energy feedstock for thermochemical conversion, and a precursor for synthesis of adsorbents and catalysts. Detailed characterization of baseline properties is necessary for enhanced environmental and economic utilization of this valuable resource. Baseline physicochemical characterization was carried out at two broiler production facilities (Arkansas, PL1, and North Carolina, PL2). Greater concentrations of inorganic nitrogen, phosphorus, and potassium were obtained for PL1, suggesting greater nutrient value compared to PL2. PL2 had greater carbon content and water-holding capacity than PL1. X-ray photoelectron spectroscopy (XPS) of PL1 and PL2 indicated a similarity between litters in terms of the presence of carbon, nitrogen, and oxygen bonds. Both poultry litters had oxygen, nitrogen, sulfur, and phosphorous functional groups, as confirmed by infrared spectroscopy. Time of flight – secondary ion mass spectroscopy of negative ions also indicated similarity of the surface charge distribution between PL1 and PL2. Overall, poultry litters evaluated had similar surface chemistries, with nutrient composition varying based on rearing conditions, which has implications for downstream use in thermochemical conversion and other value-added products.
ISSN:1930-2126
1930-2126
DOI:10.15376/biores.18.2.3961-3977