Loading…

Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2

Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune syst...

Full description

Saved in:
Bibliographic Details
Published in:ACS central science 2019-03, Vol.5 (3), p.524-538
Main Authors: Klontz, Erik H, Trastoy, Beatriz, Deredge, Daniel, Fields, James K, Li, Chao, Orwenyo, Jared, Marina, Alberto, Beadenkopf, Robert, Günther, Sebastian, Flores, Jair, Wintrode, Patrick L, Wang, Lai-Xi, Guerin, Marcelo E, Sundberg, Eric J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3
cites cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3
container_end_page 538
container_issue 3
container_start_page 524
container_title ACS central science
container_volume 5
creator Klontz, Erik H
Trastoy, Beatriz
Deredge, Daniel
Fields, James K
Li, Chao
Orwenyo, Jared
Marina, Alberto
Beadenkopf, Robert
Günther, Sebastian
Flores, Jair
Wintrode, Patrick L
Wang, Lai-Xi
Guerin, Marcelo E
Sundberg, Eric J
description Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.
doi_str_mv 10.1021/acscentsci.8b00917
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_004711398bcc42978684ed40020eff2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_004711398bcc42978684ed40020eff2d</doaj_id><sourcerecordid>2202199374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</originalsourceid><addsrcrecordid>eNp9ks1uEzEUhUcIRKvSF2CBLFZsEmyPZ2xvkNqqhEgtILWsLf9OHE3sYM8gZceKPa_Ik-B0QqAbVrbscz_f63Oq6iWCcwQxeit11jYMWfs5UxByRJ9Up7imZEZ5g54e96Q-qc5zXkMIEWnbBtPn1UkNeU1rBk-rH7ext3rsZQKXMvsMogOXKUoD7rZWD2ncgI-_vv9c9Dstw8OZd177YQdkMOBzitrm7EO3r7tf2SS3dhy8BstuAW5jiLqPQfbgIgxeReNtBmoHroOJXSHG7I3MFtzhF9UzJ_tszw_rWfXl_fX91YfZzafF8uriZiZbCIeZwYxKxBTDzinsjDGSMs0lVlZCDRFtLGLMcUUNI0ZR3eCGcIWc5mXgRtVn1XLimijXYpv8RqadiNKLh4OYOiFT6b-3AkJCEao5U1oTzClrGbGGQIihdQ6bwno3sbaj2lizdyPJ_hH08U3wK9HFb6IlNSekLoDXEyDmwYvi5GD1SscQyscL1DQUU15Ebw6vpPh1tHkQG1-c73sZbByzwLikYT8dKVI8SXWKOSfrjr0gKPahEX9DIw6hKUWv_p3iWPInIkUwnwSlWKzjmIqf-X_E3w460qA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202199374</pqid></control><display><type>article</type><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><source>Open Access: PubMed Central</source><creator>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J</creator><creatorcontrib>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.8b00917</identifier><identifier>PMID: 30937380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antennas ; Carbohydrates ; Chemical biology ; Crystal structure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Peptides and proteins</subject><ispartof>ACS central science, 2019-03, Vol.5 (3), p.524-538</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</citedby><cites>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</cites><orcidid>0000-0002-1923-972X ; 0000-0002-6897-6523 ; 0000-0003-0478-3033 ; 0000-0002-8090-2017 ; 0000-0003-4293-5819 ; 0000-0001-9524-3184 ; 0000000304783033 ; 0000000268976523 ; 0000000280902017 ; 000000021923972X ; 0000000342935819 ; 0000000195243184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557279$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klontz, Erik H</creatorcontrib><creatorcontrib>Trastoy, Beatriz</creatorcontrib><creatorcontrib>Deredge, Daniel</creatorcontrib><creatorcontrib>Fields, James K</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Orwenyo, Jared</creatorcontrib><creatorcontrib>Marina, Alberto</creatorcontrib><creatorcontrib>Beadenkopf, Robert</creatorcontrib><creatorcontrib>Günther, Sebastian</creatorcontrib><creatorcontrib>Flores, Jair</creatorcontrib><creatorcontrib>Wintrode, Patrick L</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Guerin, Marcelo E</creatorcontrib><creatorcontrib>Sundberg, Eric J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</description><subject>Antennas</subject><subject>Carbohydrates</subject><subject>Chemical biology</subject><subject>Crystal structure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Peptides and proteins</subject><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1uEzEUhUcIRKvSF2CBLFZsEmyPZ2xvkNqqhEgtILWsLf9OHE3sYM8gZceKPa_Ik-B0QqAbVrbscz_f63Oq6iWCcwQxeit11jYMWfs5UxByRJ9Up7imZEZ5g54e96Q-qc5zXkMIEWnbBtPn1UkNeU1rBk-rH7ext3rsZQKXMvsMogOXKUoD7rZWD2ncgI-_vv9c9Dstw8OZd177YQdkMOBzitrm7EO3r7tf2SS3dhy8BstuAW5jiLqPQfbgIgxeReNtBmoHroOJXSHG7I3MFtzhF9UzJ_tszw_rWfXl_fX91YfZzafF8uriZiZbCIeZwYxKxBTDzinsjDGSMs0lVlZCDRFtLGLMcUUNI0ZR3eCGcIWc5mXgRtVn1XLimijXYpv8RqadiNKLh4OYOiFT6b-3AkJCEao5U1oTzClrGbGGQIihdQ6bwno3sbaj2lizdyPJ_hH08U3wK9HFb6IlNSekLoDXEyDmwYvi5GD1SscQyscL1DQUU15Ebw6vpPh1tHkQG1-c73sZbByzwLikYT8dKVI8SXWKOSfrjr0gKPahEX9DIw6hKUWv_p3iWPInIkUwnwSlWKzjmIqf-X_E3w460qA</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Klontz, Erik H</creator><creator>Trastoy, Beatriz</creator><creator>Deredge, Daniel</creator><creator>Fields, James K</creator><creator>Li, Chao</creator><creator>Orwenyo, Jared</creator><creator>Marina, Alberto</creator><creator>Beadenkopf, Robert</creator><creator>Günther, Sebastian</creator><creator>Flores, Jair</creator><creator>Wintrode, Patrick L</creator><creator>Wang, Lai-Xi</creator><creator>Guerin, Marcelo E</creator><creator>Sundberg, Eric J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1923-972X</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><orcidid>https://orcid.org/0000-0003-0478-3033</orcidid><orcidid>https://orcid.org/0000-0002-8090-2017</orcidid><orcidid>https://orcid.org/0000-0003-4293-5819</orcidid><orcidid>https://orcid.org/0000-0001-9524-3184</orcidid><orcidid>https://orcid.org/0000000304783033</orcidid><orcidid>https://orcid.org/0000000268976523</orcidid><orcidid>https://orcid.org/0000000280902017</orcidid><orcidid>https://orcid.org/000000021923972X</orcidid><orcidid>https://orcid.org/0000000342935819</orcidid><orcidid>https://orcid.org/0000000195243184</orcidid></search><sort><creationdate>20190327</creationdate><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><author>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antennas</topic><topic>Carbohydrates</topic><topic>Chemical biology</topic><topic>Crystal structure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Peptides and proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontz, Erik H</creatorcontrib><creatorcontrib>Trastoy, Beatriz</creatorcontrib><creatorcontrib>Deredge, Daniel</creatorcontrib><creatorcontrib>Fields, James K</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Orwenyo, Jared</creatorcontrib><creatorcontrib>Marina, Alberto</creatorcontrib><creatorcontrib>Beadenkopf, Robert</creatorcontrib><creatorcontrib>Günther, Sebastian</creatorcontrib><creatorcontrib>Flores, Jair</creatorcontrib><creatorcontrib>Wintrode, Patrick L</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Guerin, Marcelo E</creatorcontrib><creatorcontrib>Sundberg, Eric J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klontz, Erik H</au><au>Trastoy, Beatriz</au><au>Deredge, Daniel</au><au>Fields, James K</au><au>Li, Chao</au><au>Orwenyo, Jared</au><au>Marina, Alberto</au><au>Beadenkopf, Robert</au><au>Günther, Sebastian</au><au>Flores, Jair</au><au>Wintrode, Patrick L</au><au>Wang, Lai-Xi</au><au>Guerin, Marcelo E</au><au>Sundberg, Eric J</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>524</spage><epage>538</epage><pages>524-538</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30937380</pmid><doi>10.1021/acscentsci.8b00917</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1923-972X</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><orcidid>https://orcid.org/0000-0003-0478-3033</orcidid><orcidid>https://orcid.org/0000-0002-8090-2017</orcidid><orcidid>https://orcid.org/0000-0003-4293-5819</orcidid><orcidid>https://orcid.org/0000-0001-9524-3184</orcidid><orcidid>https://orcid.org/0000000304783033</orcidid><orcidid>https://orcid.org/0000000268976523</orcidid><orcidid>https://orcid.org/0000000280902017</orcidid><orcidid>https://orcid.org/000000021923972X</orcidid><orcidid>https://orcid.org/0000000342935819</orcidid><orcidid>https://orcid.org/0000000195243184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-7943
ispartof ACS central science, 2019-03, Vol.5 (3), p.524-538
issn 2374-7943
2374-7951
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_004711398bcc42978684ed40020eff2d
source Open Access: PubMed Central
subjects Antennas
Carbohydrates
Chemical biology
Crystal structure
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Peptides and proteins
title Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Basis%20of%20Broad%20Spectrum%20N%E2%80%91Glycan%20Specificity%20and%20Processing%20of%20Therapeutic%20IgG%20Monoclonal%20Antibodies%20by%20Endoglycosidase%20S2&rft.jtitle=ACS%20central%20science&rft.au=Klontz,%20Erik%20H&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Stanford%20Synchrotron%20Radiation%20Lightsource%20(SSRL)&rft.date=2019-03-27&rft.volume=5&rft.issue=3&rft.spage=524&rft.epage=538&rft.pages=524-538&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.8b00917&rft_dat=%3Cproquest_doaj_%3E2202199374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202199374&rft_id=info:pmid/30937380&rfr_iscdi=true