Loading…
Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2
Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune syst...
Saved in:
Published in: | ACS central science 2019-03, Vol.5 (3), p.524-538 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3 |
container_end_page | 538 |
container_issue | 3 |
container_start_page | 524 |
container_title | ACS central science |
container_volume | 5 |
creator | Klontz, Erik H Trastoy, Beatriz Deredge, Daniel Fields, James K Li, Chao Orwenyo, Jared Marina, Alberto Beadenkopf, Robert Günther, Sebastian Flores, Jair Wintrode, Patrick L Wang, Lai-Xi Guerin, Marcelo E Sundberg, Eric J |
description | Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions. |
doi_str_mv | 10.1021/acscentsci.8b00917 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_004711398bcc42978684ed40020eff2d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_004711398bcc42978684ed40020eff2d</doaj_id><sourcerecordid>2202199374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</originalsourceid><addsrcrecordid>eNp9ks1uEzEUhUcIRKvSF2CBLFZsEmyPZ2xvkNqqhEgtILWsLf9OHE3sYM8gZceKPa_Ik-B0QqAbVrbscz_f63Oq6iWCcwQxeit11jYMWfs5UxByRJ9Up7imZEZ5g54e96Q-qc5zXkMIEWnbBtPn1UkNeU1rBk-rH7ext3rsZQKXMvsMogOXKUoD7rZWD2ncgI-_vv9c9Dstw8OZd177YQdkMOBzitrm7EO3r7tf2SS3dhy8BstuAW5jiLqPQfbgIgxeReNtBmoHroOJXSHG7I3MFtzhF9UzJ_tszw_rWfXl_fX91YfZzafF8uriZiZbCIeZwYxKxBTDzinsjDGSMs0lVlZCDRFtLGLMcUUNI0ZR3eCGcIWc5mXgRtVn1XLimijXYpv8RqadiNKLh4OYOiFT6b-3AkJCEao5U1oTzClrGbGGQIihdQ6bwno3sbaj2lizdyPJ_hH08U3wK9HFb6IlNSekLoDXEyDmwYvi5GD1SscQyscL1DQUU15Ebw6vpPh1tHkQG1-c73sZbByzwLikYT8dKVI8SXWKOSfrjr0gKPahEX9DIw6hKUWv_p3iWPInIkUwnwSlWKzjmIqf-X_E3w460qA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202199374</pqid></control><display><type>article</type><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><source>Open Access: PubMed Central</source><creator>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J</creator><creatorcontrib>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL) ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</description><identifier>ISSN: 2374-7943</identifier><identifier>EISSN: 2374-7951</identifier><identifier>DOI: 10.1021/acscentsci.8b00917</identifier><identifier>PMID: 30937380</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antennas ; Carbohydrates ; Chemical biology ; Crystal structure ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Peptides and proteins</subject><ispartof>ACS central science, 2019-03, Vol.5 (3), p.524-538</ispartof><rights>Copyright © 2019 American Chemical Society 2019 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</citedby><cites>FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</cites><orcidid>0000-0002-1923-972X ; 0000-0002-6897-6523 ; 0000-0003-0478-3033 ; 0000-0002-8090-2017 ; 0000-0003-4293-5819 ; 0000-0001-9524-3184 ; 0000000304783033 ; 0000000268976523 ; 0000000280902017 ; 000000021923972X ; 0000000342935819 ; 0000000195243184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439443/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6439443/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30937380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1557279$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Klontz, Erik H</creatorcontrib><creatorcontrib>Trastoy, Beatriz</creatorcontrib><creatorcontrib>Deredge, Daniel</creatorcontrib><creatorcontrib>Fields, James K</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Orwenyo, Jared</creatorcontrib><creatorcontrib>Marina, Alberto</creatorcontrib><creatorcontrib>Beadenkopf, Robert</creatorcontrib><creatorcontrib>Günther, Sebastian</creatorcontrib><creatorcontrib>Flores, Jair</creatorcontrib><creatorcontrib>Wintrode, Patrick L</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Guerin, Marcelo E</creatorcontrib><creatorcontrib>Sundberg, Eric J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><title>ACS central science</title><addtitle>ACS Cent. Sci</addtitle><description>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</description><subject>Antennas</subject><subject>Carbohydrates</subject><subject>Chemical biology</subject><subject>Crystal structure</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Peptides and proteins</subject><issn>2374-7943</issn><issn>2374-7951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1uEzEUhUcIRKvSF2CBLFZsEmyPZ2xvkNqqhEgtILWsLf9OHE3sYM8gZceKPa_Ik-B0QqAbVrbscz_f63Oq6iWCcwQxeit11jYMWfs5UxByRJ9Up7imZEZ5g54e96Q-qc5zXkMIEWnbBtPn1UkNeU1rBk-rH7ext3rsZQKXMvsMogOXKUoD7rZWD2ncgI-_vv9c9Dstw8OZd177YQdkMOBzitrm7EO3r7tf2SS3dhy8BstuAW5jiLqPQfbgIgxeReNtBmoHroOJXSHG7I3MFtzhF9UzJ_tszw_rWfXl_fX91YfZzafF8uriZiZbCIeZwYxKxBTDzinsjDGSMs0lVlZCDRFtLGLMcUUNI0ZR3eCGcIWc5mXgRtVn1XLimijXYpv8RqadiNKLh4OYOiFT6b-3AkJCEao5U1oTzClrGbGGQIihdQ6bwno3sbaj2lizdyPJ_hH08U3wK9HFb6IlNSekLoDXEyDmwYvi5GD1SscQyscL1DQUU15Ebw6vpPh1tHkQG1-c73sZbByzwLikYT8dKVI8SXWKOSfrjr0gKPahEX9DIw6hKUWv_p3iWPInIkUwnwSlWKzjmIqf-X_E3w460qA</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Klontz, Erik H</creator><creator>Trastoy, Beatriz</creator><creator>Deredge, Daniel</creator><creator>Fields, James K</creator><creator>Li, Chao</creator><creator>Orwenyo, Jared</creator><creator>Marina, Alberto</creator><creator>Beadenkopf, Robert</creator><creator>Günther, Sebastian</creator><creator>Flores, Jair</creator><creator>Wintrode, Patrick L</creator><creator>Wang, Lai-Xi</creator><creator>Guerin, Marcelo E</creator><creator>Sundberg, Eric J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1923-972X</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><orcidid>https://orcid.org/0000-0003-0478-3033</orcidid><orcidid>https://orcid.org/0000-0002-8090-2017</orcidid><orcidid>https://orcid.org/0000-0003-4293-5819</orcidid><orcidid>https://orcid.org/0000-0001-9524-3184</orcidid><orcidid>https://orcid.org/0000000304783033</orcidid><orcidid>https://orcid.org/0000000268976523</orcidid><orcidid>https://orcid.org/0000000280902017</orcidid><orcidid>https://orcid.org/000000021923972X</orcidid><orcidid>https://orcid.org/0000000342935819</orcidid><orcidid>https://orcid.org/0000000195243184</orcidid></search><sort><creationdate>20190327</creationdate><title>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</title><author>Klontz, Erik H ; Trastoy, Beatriz ; Deredge, Daniel ; Fields, James K ; Li, Chao ; Orwenyo, Jared ; Marina, Alberto ; Beadenkopf, Robert ; Günther, Sebastian ; Flores, Jair ; Wintrode, Patrick L ; Wang, Lai-Xi ; Guerin, Marcelo E ; Sundberg, Eric J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antennas</topic><topic>Carbohydrates</topic><topic>Chemical biology</topic><topic>Crystal structure</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Peptides and proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klontz, Erik H</creatorcontrib><creatorcontrib>Trastoy, Beatriz</creatorcontrib><creatorcontrib>Deredge, Daniel</creatorcontrib><creatorcontrib>Fields, James K</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Orwenyo, Jared</creatorcontrib><creatorcontrib>Marina, Alberto</creatorcontrib><creatorcontrib>Beadenkopf, Robert</creatorcontrib><creatorcontrib>Günther, Sebastian</creatorcontrib><creatorcontrib>Flores, Jair</creatorcontrib><creatorcontrib>Wintrode, Patrick L</creatorcontrib><creatorcontrib>Wang, Lai-Xi</creatorcontrib><creatorcontrib>Guerin, Marcelo E</creatorcontrib><creatorcontrib>Sundberg, Eric J</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>ACS central science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klontz, Erik H</au><au>Trastoy, Beatriz</au><au>Deredge, Daniel</au><au>Fields, James K</au><au>Li, Chao</au><au>Orwenyo, Jared</au><au>Marina, Alberto</au><au>Beadenkopf, Robert</au><au>Günther, Sebastian</au><au>Flores, Jair</au><au>Wintrode, Patrick L</au><au>Wang, Lai-Xi</au><au>Guerin, Marcelo E</au><au>Sundberg, Eric J</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)</aucorp><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2</atitle><jtitle>ACS central science</jtitle><addtitle>ACS Cent. Sci</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>5</volume><issue>3</issue><spage>524</spage><epage>538</epage><pages>524-538</pages><issn>2374-7943</issn><eissn>2374-7951</eissn><abstract>Immunoglobulin G (IgG) glycosylation critically modulates antibody effector functions. Streptococcus pyogenes secretes a unique endo-β-N-acetylglucosaminidase, EndoS2, which deglycosylates the conserved N-linked glycan at Asn297 on IgG Fc to eliminate its effector functions and evade the immune system. EndoS2 and specific point mutants have been used to chemoenzymatically synthesize antibodies with customizable glycosylation for gain of functions. EndoS2 is useful in these schemes because it accommodates a broad range of N-glycans, including high-mannose, complex, and hybrid types; however, its mechanism of substrate recognition is poorly understood. We present crystal structures of EndoS2 alone and bound to complex and high-mannose glycans; the broad N-glycan specificity is governed by critical loops that shape the binding site of EndoS2. Furthermore, hydrolytic experiments, domain-swap chimeras, and hydrogen–deuterium exchange mass spectrometry reveal the importance of the carbohydrate-binding module in the mechanism of IgG recognition by EndoS2, providing insights into engineering enzymes to catalyze customizable glycosylation reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30937380</pmid><doi>10.1021/acscentsci.8b00917</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1923-972X</orcidid><orcidid>https://orcid.org/0000-0002-6897-6523</orcidid><orcidid>https://orcid.org/0000-0003-0478-3033</orcidid><orcidid>https://orcid.org/0000-0002-8090-2017</orcidid><orcidid>https://orcid.org/0000-0003-4293-5819</orcidid><orcidid>https://orcid.org/0000-0001-9524-3184</orcidid><orcidid>https://orcid.org/0000000304783033</orcidid><orcidid>https://orcid.org/0000000268976523</orcidid><orcidid>https://orcid.org/0000000280902017</orcidid><orcidid>https://orcid.org/000000021923972X</orcidid><orcidid>https://orcid.org/0000000342935819</orcidid><orcidid>https://orcid.org/0000000195243184</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-7943 |
ispartof | ACS central science, 2019-03, Vol.5 (3), p.524-538 |
issn | 2374-7943 2374-7951 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_004711398bcc42978684ed40020eff2d |
source | Open Access: PubMed Central |
subjects | Antennas Carbohydrates Chemical biology Crystal structure INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Peptides and proteins |
title | Molecular Basis of Broad Spectrum N‑Glycan Specificity and Processing of Therapeutic IgG Monoclonal Antibodies by Endoglycosidase S2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Basis%20of%20Broad%20Spectrum%20N%E2%80%91Glycan%20Specificity%20and%20Processing%20of%20Therapeutic%20IgG%20Monoclonal%20Antibodies%20by%20Endoglycosidase%20S2&rft.jtitle=ACS%20central%20science&rft.au=Klontz,%20Erik%20H&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States).%20Stanford%20Synchrotron%20Radiation%20Lightsource%20(SSRL)&rft.date=2019-03-27&rft.volume=5&rft.issue=3&rft.spage=524&rft.epage=538&rft.pages=524-538&rft.issn=2374-7943&rft.eissn=2374-7951&rft_id=info:doi/10.1021/acscentsci.8b00917&rft_dat=%3Cproquest_doaj_%3E2202199374%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a600t-d287a18b82ffb2fddda78c9a2bea0c0175e188f9b7d84db7c52549b1fc99375b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2202199374&rft_id=info:pmid/30937380&rfr_iscdi=true |