Loading…

Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance

Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in genetics 2021-06, Vol.12, p.652189-652189
Main Authors: Gupta, Chirag, Ramegowda, Venkategowda, Basu, Supratim, Pereira, Andy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3
cites cdi_FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3
container_end_page 652189
container_issue
container_start_page 652189
container_title Frontiers in genetics
container_volume 12
creator Gupta, Chirag
Ramegowda, Venkategowda
Basu, Supratim
Pereira, Andy
description Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.
doi_str_mv 10.3389/fgene.2021.652189
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00565c66d7894514b8eafca77ca38559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00565c66d7894514b8eafca77ca38559</doaj_id><sourcerecordid>2550632860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhlcIRKvSH8Btj1wS_L32BQlKC5HCh1B7tma9443Lxg62E8S_Z9NUiM5lRu8788zhbZrXlCw51-atHzHikhFGl0oyqs2z5pwqJRZ6lp7_N581l6Xck7mE4ZyLl80ZF0wYotl5M9yVEMf2K9bfKf9cfICCQ_sF3CZEbNcIOR7tmtrvGYfganubIRaXw66GFNsbcDXl0q7iIU2H-TTE9mNO-3FT2x9YQqkQHb5qXniYCl4-9ovm7ub69urzYv3t0-rq_XrhhGB1MaBmjnUeKFHoQfWa-E4y6An1mvdOGcGPFqFECGEGbxzVHokZOt1J6fhFszpxhwT3dpfDFvIfmyDYByHl0UKuwU1oCZFKOqXmUyMkFb1G8A66zgHXUpqZ9e7E2u37LQ4OY80wPYE-dWLY2DEdrGZKdJ2aAW8eATn92mOpdhuKw2mCiGlfLJOSKM60IvMqPa26nErJ6P-9ocQew7YPYdtj2PYUNv8L27ydZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550632860</pqid></control><display><type>article</type><title>Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance</title><source>PubMed Central</source><creator>Gupta, Chirag ; Ramegowda, Venkategowda ; Basu, Supratim ; Pereira, Andy</creator><creatorcontrib>Gupta, Chirag ; Ramegowda, Venkategowda ; Basu, Supratim ; Pereira, Andy</creatorcontrib><description>Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.</description><identifier>ISSN: 1664-8021</identifier><identifier>EISSN: 1664-8021</identifier><identifier>DOI: 10.3389/fgene.2021.652189</identifier><identifier>PMID: 34249082</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>drought ; gene regulatory network ; Genetics ; machine learning ; oryza ; rice ; transcription factor</subject><ispartof>Frontiers in genetics, 2021-06, Vol.12, p.652189-652189</ispartof><rights>Copyright © 2021 Gupta, Ramegowda, Basu and Pereira. 2021 Gupta, Ramegowda, Basu and Pereira</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3</citedby><cites>FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264776/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264776/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Gupta, Chirag</creatorcontrib><creatorcontrib>Ramegowda, Venkategowda</creatorcontrib><creatorcontrib>Basu, Supratim</creatorcontrib><creatorcontrib>Pereira, Andy</creatorcontrib><title>Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance</title><title>Frontiers in genetics</title><description>Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.</description><subject>drought</subject><subject>gene regulatory network</subject><subject>Genetics</subject><subject>machine learning</subject><subject>oryza</subject><subject>rice</subject><subject>transcription factor</subject><issn>1664-8021</issn><issn>1664-8021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhlcIRKvSH8Btj1wS_L32BQlKC5HCh1B7tma9443Lxg62E8S_Z9NUiM5lRu8788zhbZrXlCw51-atHzHikhFGl0oyqs2z5pwqJRZ6lp7_N581l6Xck7mE4ZyLl80ZF0wYotl5M9yVEMf2K9bfKf9cfICCQ_sF3CZEbNcIOR7tmtrvGYfganubIRaXw66GFNsbcDXl0q7iIU2H-TTE9mNO-3FT2x9YQqkQHb5qXniYCl4-9ovm7ub69urzYv3t0-rq_XrhhGB1MaBmjnUeKFHoQfWa-E4y6An1mvdOGcGPFqFECGEGbxzVHokZOt1J6fhFszpxhwT3dpfDFvIfmyDYByHl0UKuwU1oCZFKOqXmUyMkFb1G8A66zgHXUpqZ9e7E2u37LQ4OY80wPYE-dWLY2DEdrGZKdJ2aAW8eATn92mOpdhuKw2mCiGlfLJOSKM60IvMqPa26nErJ6P-9ocQew7YPYdtj2PYUNv8L27ydZA</recordid><startdate>20210624</startdate><enddate>20210624</enddate><creator>Gupta, Chirag</creator><creator>Ramegowda, Venkategowda</creator><creator>Basu, Supratim</creator><creator>Pereira, Andy</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210624</creationdate><title>Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance</title><author>Gupta, Chirag ; Ramegowda, Venkategowda ; Basu, Supratim ; Pereira, Andy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>drought</topic><topic>gene regulatory network</topic><topic>Genetics</topic><topic>machine learning</topic><topic>oryza</topic><topic>rice</topic><topic>transcription factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Chirag</creatorcontrib><creatorcontrib>Ramegowda, Venkategowda</creatorcontrib><creatorcontrib>Basu, Supratim</creatorcontrib><creatorcontrib>Pereira, Andy</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ: Directory of Open Access Journals</collection><jtitle>Frontiers in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Chirag</au><au>Ramegowda, Venkategowda</au><au>Basu, Supratim</au><au>Pereira, Andy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance</atitle><jtitle>Frontiers in genetics</jtitle><date>2021-06-24</date><risdate>2021</risdate><volume>12</volume><spage>652189</spage><epage>652189</epage><pages>652189-652189</pages><issn>1664-8021</issn><eissn>1664-8021</eissn><abstract>Gene regulatory networks underpin stress response pathways in plants. However, parsing these networks to prioritize key genes underlying a particular trait is challenging. Here, we have built the Gene Regulation and Association Network (GRAiN) of rice ( Oryza sativa ). GRAiN is an interactive query-based web-platform that allows users to study functional relationships between transcription factors (TFs) and genetic modules underlying abiotic-stress responses. We built GRAiN by applying a combination of different network inference algorithms to publicly available gene expression data. We propose a supervised machine learning framework that complements GRAiN in prioritizing genes that regulate stress signal transduction and modulate gene expression under drought conditions. Our framework converts intricate network connectivity patterns of 2160 TFs into a single drought score. We observed that TFs with the highest drought scores define the functional, structural, and evolutionary characteristics of drought resistance in rice. Our approach accurately predicted the function of OsbHLH148 TF, which we validated using in vitro protein-DNA binding assays and mRNA sequencing loss-of-function mutants grown under control and drought stress conditions. Our network and the complementary machine learning strategy lends itself to predicting key regulatory genes underlying other agricultural traits and will assist in the genetic engineering of desirable rice varieties.</abstract><pub>Frontiers Media S.A</pub><pmid>34249082</pmid><doi>10.3389/fgene.2021.652189</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-8021
ispartof Frontiers in genetics, 2021-06, Vol.12, p.652189-652189
issn 1664-8021
1664-8021
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_00565c66d7894514b8eafca77ca38559
source PubMed Central
subjects drought
gene regulatory network
Genetics
machine learning
oryza
rice
transcription factor
title Using Network-Based Machine Learning to Predict Transcription Factors Involved in Drought Resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Network-Based%20Machine%20Learning%20to%20Predict%20Transcription%20Factors%20Involved%20in%20Drought%20Resistance&rft.jtitle=Frontiers%20in%20genetics&rft.au=Gupta,%20Chirag&rft.date=2021-06-24&rft.volume=12&rft.spage=652189&rft.epage=652189&rft.pages=652189-652189&rft.issn=1664-8021&rft.eissn=1664-8021&rft_id=info:doi/10.3389/fgene.2021.652189&rft_dat=%3Cproquest_doaj_%3E2550632860%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-de82c27fa106efa6b80f752ab01f83bc6943106e0104449df9c18fe09d78755c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550632860&rft_id=info:pmid/34249082&rfr_iscdi=true