Loading…

Physical and Mechanical Properties of Composite Scaffolds with or without Collagen Impregnation

This in vitro study aimed at evaluating the physical and mechanical properties of newly developed scaffolds of poly (lactic-co-glycolic acid) (PLGA) and biphasic ceramic (Hydroxyapatite HA + beta-tricalciumphosphate β-TCP) with or without collagen impregnation to be used for bone regeneration in the...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-10, Vol.9 (20), p.4296
Main Authors: Marcos, José Joaquín López, Perrotti, Vittoria, Iaculli, Flavia, Aragones, Águedo, Benfatti, Cesar Augusto Magalhães, Magrin, Gabriel Leonardo, Piattelli, Adriano, Bianchini, Marco Aurélio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This in vitro study aimed at evaluating the physical and mechanical properties of newly developed scaffolds of poly (lactic-co-glycolic acid) (PLGA) and biphasic ceramic (Hydroxyapatite HA + beta-tricalciumphosphate β-TCP) with or without collagen impregnation to be used for bone regeneration in the oral and maxillofacial district. Solvent casting and particle leaching techniques were used to produce the scaffolds, which were then divided into six groups according to PLGA/HA + β-TCP ratio and impregnation with collagen: G1 (50/50) + collagen; G2 (60/40) + collagen; G3 (40/60) + collagen; G4 (50/50); G5 (60/40); G6 (40/60). As control group, inorganic xenogenous bone was used. Structure and porosity were evaluated by scanning electron microscopy, and a chemical analysis was performed through an energy-dispersive spectrometer. Moreover, to evaluate the hydrophilicity of the samples, a wettability test was conceived, and finally, mechanical properties were examined by a compression test. High porosity and interconnectivity, resulting in a large surface area and great fluid retention capacity, were presented by the PLGA/HA + β-TCP scaffolds. In the composite groups, collagen increased the wettability and the mechanical resistance, although the latter was not statistically affected by the percentage of HA + β-TCP added. Further in vitro and in vivo studies are needed for a deeper understanding of the influence of collagen on the biological behavior of the developed composite materials and their potential, namely biocompatibility and bioactivity, for bone tissue regeneration.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9204296