Loading…

Hydrogel-Encapsulated Heterogenous Mesoporous Resin Catalyst for In Situ Anti-Cancer Agent Production under Biological Conditions

A heterogenous Palladium anchored Resorcinol-formaldehyde-hyperbranched PEI mesoporous catalyst, made by one-pot synthesis, was used successfully for in situ Suzuki-Miyaura cross coupling synthesis of anticancer prodrug PP-121 from iodoprazole and boronic ester precursors. The mesoporous catalyst wi...

Full description

Saved in:
Bibliographic Details
Published in:Biomolecules (Basel, Switzerland) Switzerland), 2022-12, Vol.12 (12), p.1796
Main Authors: Nabavinia, Mahboubeh, Kanjilal, Baishali, Pandey, Manoj, Jonnalagadda, Subash, Hesketh, Robert, Martins-Green, Manuela, Noshadi, Iman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A heterogenous Palladium anchored Resorcinol-formaldehyde-hyperbranched PEI mesoporous catalyst, made by one-pot synthesis, was used successfully for in situ Suzuki-Miyaura cross coupling synthesis of anticancer prodrug PP-121 from iodoprazole and boronic ester precursors. The mesoporous catalyst with the non-cytotoxic precursors were tested in 2D in vitro model with excellent cytocompatibility and a strong suppression of PC3 cancer cell proliferation, underscored by 50% reduction in PC3 cells viability and 55% reduction in cell metabolism activity and an enhanced rate of early and late apoptosis in flow cytometry, that was induced only by successful in situ pro drug PP121 synthesis from the precursors. The 3D gelatin methacrylate hydrogel encapsulated in vitro cell models underscored the results with a 52% reduction in cell metabolism and underscored apoptosis of PC3 cells when the Pd anchored catalyst was combined with the precursors. In situ application of Suzuki-Miyaura cross coupling of non-cytotoxic precursors to cancer drug, along with their successful encapsulation in an injectable hydrogel could be applied for tumor point drug delivery strategies that can circumvent deleterious side effects and poor bioavailability chemotherapy routes with concomitant enhanced efficacy.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom12121796