Loading…

On the vanishing rate of smooth CR functions

at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the American Mathematical Society. Series B 2014-01, Vol.1 (3), p.23-32
Main Authors: Della Sala, Giuseppe, Lamel, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3
cites cdi_FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3
container_end_page 32
container_issue 3
container_start_page 23
container_title Proceedings of the American Mathematical Society. Series B
container_volume 1
creator Della Sala, Giuseppe
Lamel, Bernhard
description at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by comparison with a suitable exponential of the modulus of a local peak function.]]>
doi_str_mv 10.1090/S2330-1511-2014-00007-9
format article
fullrecord <record><control><sourceid>ams_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_009166b966c549e8b84084849ad3f5f9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_009166b966c549e8b84084849ad3f5f9</doaj_id><sourcerecordid>10_1090_S2330_1511_2014_00007_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3</originalsourceid><addsrcrecordid>eNqNkNtKAzEQhoMoWGqfwTyAqzlvcinFQ6FQ8HAdJtmk3dJuJFkF395uV4qXzs0MM_N_Fx9C15TcUmLI3SvjnFRUUloxQkVFDlVX5gxNTofzP_MlmpWyPfxQymQt6wm6WXW43wT8BV1bNm23xhn6gFPEZZ9Sv8HzFxw_O9-3qStX6CLCroTZb5-i98eHt_lztVw9Leb3ywqYIqYS0khggXkQzpngItFBKBmBO-690eApNdozHhxVILwLspFSNkTWtTah4VO0GLlNgq39yO0e8rdN0NrjIuW1hdy3fhcsIYYq5YxSXgoTtNOCaKGFgYZHGc2BVY8sn1MpOcQTjxI7OLRHh3bQYweH9ujQDkk2JmFf_h36Ac1BcJo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the vanishing rate of smooth CR functions</title><source>American Mathematical Society Publications - Open Access</source><creator>Della Sala, Giuseppe ; Lamel, Bernhard</creator><creatorcontrib>Della Sala, Giuseppe ; Lamel, Bernhard</creatorcontrib><description>at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by comparison with a suitable exponential of the modulus of a local peak function.]]&gt;</description><identifier>ISSN: 2330-1511</identifier><identifier>EISSN: 2330-1511</identifier><identifier>DOI: 10.1090/S2330-1511-2014-00007-9</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>CR function ; exponential decay ; Watson Lemma</subject><ispartof>Proceedings of the American Mathematical Society. Series B, 2014-01, Vol.1 (3), p.23-32</ispartof><rights>Copyright 2014, by the author under Creative Commons Attribution-Noncommercial 3.0 License (CC BY NC 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3</citedby><cites>FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S2330-1511-2014-00007-9S2330-1511-2014-00007-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S2330-1511-2014-00007-9$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,314,780,784,23324,27924,27925,77710,77720</link.rule.ids></links><search><creatorcontrib>Della Sala, Giuseppe</creatorcontrib><creatorcontrib>Lamel, Bernhard</creatorcontrib><title>On the vanishing rate of smooth CR functions</title><title>Proceedings of the American Mathematical Society. Series B</title><description>at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by comparison with a suitable exponential of the modulus of a local peak function.]]&gt;</description><subject>CR function</subject><subject>exponential decay</subject><subject>Watson Lemma</subject><issn>2330-1511</issn><issn>2330-1511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNkNtKAzEQhoMoWGqfwTyAqzlvcinFQ6FQ8HAdJtmk3dJuJFkF395uV4qXzs0MM_N_Fx9C15TcUmLI3SvjnFRUUloxQkVFDlVX5gxNTofzP_MlmpWyPfxQymQt6wm6WXW43wT8BV1bNm23xhn6gFPEZZ9Sv8HzFxw_O9-3qStX6CLCroTZb5-i98eHt_lztVw9Leb3ywqYIqYS0khggXkQzpngItFBKBmBO-690eApNdozHhxVILwLspFSNkTWtTah4VO0GLlNgq39yO0e8rdN0NrjIuW1hdy3fhcsIYYq5YxSXgoTtNOCaKGFgYZHGc2BVY8sn1MpOcQTjxI7OLRHh3bQYweH9ujQDkk2JmFf_h36Ac1BcJo</recordid><startdate>20140113</startdate><enddate>20140113</enddate><creator>Della Sala, Giuseppe</creator><creator>Lamel, Bernhard</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20140113</creationdate><title>On the vanishing rate of smooth CR functions</title><author>Della Sala, Giuseppe ; Lamel, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CR function</topic><topic>exponential decay</topic><topic>Watson Lemma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Della Sala, Giuseppe</creatorcontrib><creatorcontrib>Lamel, Bernhard</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Della Sala, Giuseppe</au><au>Lamel, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the vanishing rate of smooth CR functions</atitle><jtitle>Proceedings of the American Mathematical Society. Series B</jtitle><date>2014-01-13</date><risdate>2014</risdate><volume>1</volume><issue>3</issue><spage>23</spage><epage>32</epage><pages>23-32</pages><issn>2330-1511</issn><eissn>2330-1511</eissn><abstract>at 0, i.e. whose Taylor expansion about 0 vanishes identically. Our aim is to characterize the rate at which flat CR functions can decrease without vanishing identically. As it turns out, non-trivial CR functions cannot decay arbitrarily fast, and a possible way of expressing the critical rate is by comparison with a suitable exponential of the modulus of a local peak function.]]&gt;</abstract><pub>American Mathematical Society</pub><doi>10.1090/S2330-1511-2014-00007-9</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2330-1511
ispartof Proceedings of the American Mathematical Society. Series B, 2014-01, Vol.1 (3), p.23-32
issn 2330-1511
2330-1511
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_009166b966c549e8b84084849ad3f5f9
source American Mathematical Society Publications - Open Access
subjects CR function
exponential decay
Watson Lemma
title On the vanishing rate of smooth CR functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20vanishing%20rate%20of%20smooth%20CR%20functions&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=Della%20Sala,%20Giuseppe&rft.date=2014-01-13&rft.volume=1&rft.issue=3&rft.spage=23&rft.epage=32&rft.pages=23-32&rft.issn=2330-1511&rft.eissn=2330-1511&rft_id=info:doi/10.1090/S2330-1511-2014-00007-9&rft_dat=%3Cams_doaj_%3E10_1090_S2330_1511_2014_00007_9%3C/ams_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a2609-4595a2e2ca4bb9ebf08e465fa3b3cc98ac1198c23eb16a4cbe5d555d057789ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true