Loading…
Shannon Entropy and K -Means Method for Automatic Diagnosis of Broken Rotor Bars in Induction Motors Using Vibration Signals
For industry, the induction motors are essential elements in production chains. Despite the robustness of induction motors, they are susceptible to failures. The broken rotor bar (BRB) fault in induction motors has received special attention since one of its characteristics is that the motor can con...
Saved in:
Published in: | Shock and vibration 2016-01, Vol.2016 (2016), p.1-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For industry, the induction motors are essential elements in production chains. Despite the robustness of induction motors, they are susceptible to failures. The broken rotor bar (BRB) fault in induction motors has received special attention since one of its characteristics is that the motor can continue operating with apparent normality; however, at certain point the fault may cause severe damage to the motor. In this work, a methodology to detect BRBs using vibration signals is proposed. The methodology uses the Shannon entropy to quantify the amount of information provided by the vibration signals, which changes due to the presence of new frequency components associated with the fault. For automatic diagnosis, the K -means cluster algorithm and a decision-making unit that looks for the nearest cluster through the Euclidian distance are applied. Unlike other reported works, the proposal can diagnose the BRB condition during startup transient and steady state regimes of operation. Additionally, the proposal is also implemented into a field programmable gate array in order to offer a low-cost and low-complex online monitoring system. The obtained results demonstrate the proposal effectiveness to diagnose half, one, and two BRBs. |
---|---|
ISSN: | 1070-9622 1875-9203 |
DOI: | 10.1155/2016/4860309 |