Loading…
Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study
The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration...
Saved in:
Published in: | Catalysts 2022-07, Vol.12 (7), p.771 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73 |
container_end_page | |
container_issue | 7 |
container_start_page | 771 |
container_title | Catalysts |
container_volume | 12 |
creator | Awada, Chawki Hajlaoui, Thameur Al Suliman, Noura Dab, Chahinez |
description | The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox. |
doi_str_mv | 10.3390/catal12070771 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe</doaj_id><sourcerecordid>2693969454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</originalsourceid><addsrcrecordid>eNpVUc1Kw0AYDKJg0R69L3iO7m82660UtYWigvXqskm-bVPSbNxNDr35Gr6eT-Laiuh3-YZhmBmYJLkg-Ioxha9L05uGUCyxlOQoGUXEUs44P_6DT5NxCBscTxGWEzFKXmfQg3craMENAT2Y1nWNCVvX1iWabLumtjX4gKzz6GnterfP2YU6fL5_BDTpoiJStWtv0AQt1-A89JFp0HM_VLvz5MSaJsD4558lL3e3y-ksXTzez6eTRVoyjPuUYU4KIUtGKkUJz0nsKgXFQuQCV0WWxcaCVqSgEHnMM6lwbqEorAUjjGRnyfzgWzmz0Z2vt8bvtDO13hPOr7TxsVcDGuOCGAJMVYRzFROyUigrJc2BlNRC9Lo8eHXevQ0Qer1xg29jfU0zxVSmuOBRlR5UpXcheLC_qQTr70X0v0XYFwymfpM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693969454</pqid></control><display><type>article</type><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</creator><creatorcontrib>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</creatorcontrib><description>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12070771</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifiers ; Antennas ; Catalysts ; Chemical reactions ; Configurations ; Electromagnetic properties ; Electromagnetism ; enhancement ; Frequency shift ; Gold ; localized surface plasmon resonance (LSPR) ; Material properties ; Nanomaterials ; Nanoparticles ; nanorods ; Nanospheres ; Nanowires ; Numerical methods ; Optical properties ; Photocatalysis ; Receivers & amplifiers ; Resonance ; Silicon ; Silicon dioxide ; Silver ; silver/gold core-shell ; Simulation ; Surface chemistry</subject><ispartof>Catalysts, 2022-07, Vol.12 (7), p.771</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</citedby><cites>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</cites><orcidid>0000-0002-7821-352X ; 0000-0002-8795-5867 ; 0000-0002-5434-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693969454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693969454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Awada, Chawki</creatorcontrib><creatorcontrib>Hajlaoui, Thameur</creatorcontrib><creatorcontrib>Al Suliman, Noura</creatorcontrib><creatorcontrib>Dab, Chahinez</creatorcontrib><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><title>Catalysts</title><description>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</description><subject>Amplifiers</subject><subject>Antennas</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Configurations</subject><subject>Electromagnetic properties</subject><subject>Electromagnetism</subject><subject>enhancement</subject><subject>Frequency shift</subject><subject>Gold</subject><subject>localized surface plasmon resonance (LSPR)</subject><subject>Material properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanorods</subject><subject>Nanospheres</subject><subject>Nanowires</subject><subject>Numerical methods</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Receivers & amplifiers</subject><subject>Resonance</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>silver/gold core-shell</subject><subject>Simulation</subject><subject>Surface chemistry</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUc1Kw0AYDKJg0R69L3iO7m82660UtYWigvXqskm-bVPSbNxNDr35Gr6eT-Laiuh3-YZhmBmYJLkg-Ioxha9L05uGUCyxlOQoGUXEUs44P_6DT5NxCBscTxGWEzFKXmfQg3craMENAT2Y1nWNCVvX1iWabLumtjX4gKzz6GnterfP2YU6fL5_BDTpoiJStWtv0AQt1-A89JFp0HM_VLvz5MSaJsD4558lL3e3y-ksXTzez6eTRVoyjPuUYU4KIUtGKkUJz0nsKgXFQuQCV0WWxcaCVqSgEHnMM6lwbqEorAUjjGRnyfzgWzmz0Z2vt8bvtDO13hPOr7TxsVcDGuOCGAJMVYRzFROyUigrJc2BlNRC9Lo8eHXevQ0Qer1xg29jfU0zxVSmuOBRlR5UpXcheLC_qQTr70X0v0XYFwymfpM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Awada, Chawki</creator><creator>Hajlaoui, Thameur</creator><creator>Al Suliman, Noura</creator><creator>Dab, Chahinez</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7821-352X</orcidid><orcidid>https://orcid.org/0000-0002-8795-5867</orcidid><orcidid>https://orcid.org/0000-0002-5434-180X</orcidid></search><sort><creationdate>20220701</creationdate><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><author>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifiers</topic><topic>Antennas</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Configurations</topic><topic>Electromagnetic properties</topic><topic>Electromagnetism</topic><topic>enhancement</topic><topic>Frequency shift</topic><topic>Gold</topic><topic>localized surface plasmon resonance (LSPR)</topic><topic>Material properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanorods</topic><topic>Nanospheres</topic><topic>Nanowires</topic><topic>Numerical methods</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Receivers & amplifiers</topic><topic>Resonance</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>silver/gold core-shell</topic><topic>Simulation</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awada, Chawki</creatorcontrib><creatorcontrib>Hajlaoui, Thameur</creatorcontrib><creatorcontrib>Al Suliman, Noura</creatorcontrib><creatorcontrib>Dab, Chahinez</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awada, Chawki</au><au>Hajlaoui, Thameur</au><au>Al Suliman, Noura</au><au>Dab, Chahinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</atitle><jtitle>Catalysts</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>771</spage><pages>771-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal12070771</doi><orcidid>https://orcid.org/0000-0002-7821-352X</orcidid><orcidid>https://orcid.org/0000-0002-8795-5867</orcidid><orcidid>https://orcid.org/0000-0002-5434-180X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2022-07, Vol.12 (7), p.771 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe |
source | Publicly Available Content Database; Coronavirus Research Database |
subjects | Amplifiers Antennas Catalysts Chemical reactions Configurations Electromagnetic properties Electromagnetism enhancement Frequency shift Gold localized surface plasmon resonance (LSPR) Material properties Nanomaterials Nanoparticles nanorods Nanospheres Nanowires Numerical methods Optical properties Photocatalysis Receivers & amplifiers Resonance Silicon Silicon dioxide Silver silver/gold core-shell Simulation Surface chemistry |
title | Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Nanoplasmonic%20Amplifiers%20for%20Photocatalysis%E2%80%99s%20Application:%20A%20Theoretical%20Study&rft.jtitle=Catalysts&rft.au=Awada,%20Chawki&rft.date=2022-07-01&rft.volume=12&rft.issue=7&rft.spage=771&rft.pages=771-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12070771&rft_dat=%3Cproquest_doaj_%3E2693969454%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693969454&rft_id=info:pmid/&rfr_iscdi=true |