Loading…

Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study

The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2022-07, Vol.12 (7), p.771
Main Authors: Awada, Chawki, Hajlaoui, Thameur, Al Suliman, Noura, Dab, Chahinez
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73
cites cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73
container_end_page
container_issue 7
container_start_page 771
container_title Catalysts
container_volume 12
creator Awada, Chawki
Hajlaoui, Thameur
Al Suliman, Noura
Dab, Chahinez
description The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.
doi_str_mv 10.3390/catal12070771
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe</doaj_id><sourcerecordid>2693969454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</originalsourceid><addsrcrecordid>eNpVUc1Kw0AYDKJg0R69L3iO7m82660UtYWigvXqskm-bVPSbNxNDr35Gr6eT-Laiuh3-YZhmBmYJLkg-Ioxha9L05uGUCyxlOQoGUXEUs44P_6DT5NxCBscTxGWEzFKXmfQg3craMENAT2Y1nWNCVvX1iWabLumtjX4gKzz6GnterfP2YU6fL5_BDTpoiJStWtv0AQt1-A89JFp0HM_VLvz5MSaJsD4558lL3e3y-ksXTzez6eTRVoyjPuUYU4KIUtGKkUJz0nsKgXFQuQCV0WWxcaCVqSgEHnMM6lwbqEorAUjjGRnyfzgWzmz0Z2vt8bvtDO13hPOr7TxsVcDGuOCGAJMVYRzFROyUigrJc2BlNRC9Lo8eHXevQ0Qer1xg29jfU0zxVSmuOBRlR5UpXcheLC_qQTr70X0v0XYFwymfpM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693969454</pqid></control><display><type>article</type><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><source>Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</creator><creatorcontrib>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</creatorcontrib><description>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12070771</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amplifiers ; Antennas ; Catalysts ; Chemical reactions ; Configurations ; Electromagnetic properties ; Electromagnetism ; enhancement ; Frequency shift ; Gold ; localized surface plasmon resonance (LSPR) ; Material properties ; Nanomaterials ; Nanoparticles ; nanorods ; Nanospheres ; Nanowires ; Numerical methods ; Optical properties ; Photocatalysis ; Receivers &amp; amplifiers ; Resonance ; Silicon ; Silicon dioxide ; Silver ; silver/gold core-shell ; Simulation ; Surface chemistry</subject><ispartof>Catalysts, 2022-07, Vol.12 (7), p.771</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</citedby><cites>FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</cites><orcidid>0000-0002-7821-352X ; 0000-0002-8795-5867 ; 0000-0002-5434-180X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2693969454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2693969454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,38516,43895,44590,74412,75126</link.rule.ids></links><search><creatorcontrib>Awada, Chawki</creatorcontrib><creatorcontrib>Hajlaoui, Thameur</creatorcontrib><creatorcontrib>Al Suliman, Noura</creatorcontrib><creatorcontrib>Dab, Chahinez</creatorcontrib><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><title>Catalysts</title><description>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</description><subject>Amplifiers</subject><subject>Antennas</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Configurations</subject><subject>Electromagnetic properties</subject><subject>Electromagnetism</subject><subject>enhancement</subject><subject>Frequency shift</subject><subject>Gold</subject><subject>localized surface plasmon resonance (LSPR)</subject><subject>Material properties</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>nanorods</subject><subject>Nanospheres</subject><subject>Nanowires</subject><subject>Numerical methods</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Receivers &amp; amplifiers</subject><subject>Resonance</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Silver</subject><subject>silver/gold core-shell</subject><subject>Simulation</subject><subject>Surface chemistry</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUc1Kw0AYDKJg0R69L3iO7m82660UtYWigvXqskm-bVPSbNxNDr35Gr6eT-Laiuh3-YZhmBmYJLkg-Ioxha9L05uGUCyxlOQoGUXEUs44P_6DT5NxCBscTxGWEzFKXmfQg3craMENAT2Y1nWNCVvX1iWabLumtjX4gKzz6GnterfP2YU6fL5_BDTpoiJStWtv0AQt1-A89JFp0HM_VLvz5MSaJsD4558lL3e3y-ksXTzez6eTRVoyjPuUYU4KIUtGKkUJz0nsKgXFQuQCV0WWxcaCVqSgEHnMM6lwbqEorAUjjGRnyfzgWzmz0Z2vt8bvtDO13hPOr7TxsVcDGuOCGAJMVYRzFROyUigrJc2BlNRC9Lo8eHXevQ0Qer1xg29jfU0zxVSmuOBRlR5UpXcheLC_qQTr70X0v0XYFwymfpM</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Awada, Chawki</creator><creator>Hajlaoui, Thameur</creator><creator>Al Suliman, Noura</creator><creator>Dab, Chahinez</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7821-352X</orcidid><orcidid>https://orcid.org/0000-0002-8795-5867</orcidid><orcidid>https://orcid.org/0000-0002-5434-180X</orcidid></search><sort><creationdate>20220701</creationdate><title>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</title><author>Awada, Chawki ; Hajlaoui, Thameur ; Al Suliman, Noura ; Dab, Chahinez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplifiers</topic><topic>Antennas</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Configurations</topic><topic>Electromagnetic properties</topic><topic>Electromagnetism</topic><topic>enhancement</topic><topic>Frequency shift</topic><topic>Gold</topic><topic>localized surface plasmon resonance (LSPR)</topic><topic>Material properties</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>nanorods</topic><topic>Nanospheres</topic><topic>Nanowires</topic><topic>Numerical methods</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Receivers &amp; amplifiers</topic><topic>Resonance</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Silver</topic><topic>silver/gold core-shell</topic><topic>Simulation</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awada, Chawki</creatorcontrib><creatorcontrib>Hajlaoui, Thameur</creatorcontrib><creatorcontrib>Al Suliman, Noura</creatorcontrib><creatorcontrib>Dab, Chahinez</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awada, Chawki</au><au>Hajlaoui, Thameur</au><au>Al Suliman, Noura</au><au>Dab, Chahinez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study</atitle><jtitle>Catalysts</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>12</volume><issue>7</issue><spage>771</spage><pages>771-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The higher cost of Ag and Au and their resonance frequency shift limitation opened the way to find an alternative solution by developing new nanohybrid antenna based on silicon and silicon dioxide coated with metallic nanoparticles. The latter has been recently solicited as a promising configuration for more large-scale plasmonic utilisation. This work reports a multitude of fascinating new phenomenon on LSPR on silicon antenna wires coated with core-shell nanospheres and the studying of the nanoplasmonics amplifiers to control optical and electromagnetic properties of materials. The LSPR modes and their interaction with the silicon nanowires are studied using numerical methods. The suggested configuration offers resonance covering the UV-visible and NIR regions, making them an adaptable addition to the nanoplasmonics toolbox.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal12070771</doi><orcidid>https://orcid.org/0000-0002-7821-352X</orcidid><orcidid>https://orcid.org/0000-0002-8795-5867</orcidid><orcidid>https://orcid.org/0000-0002-5434-180X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2022-07, Vol.12 (7), p.771
issn 2073-4344
2073-4344
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_00b1a1e39d14495586c59f7728e1c2fe
source Publicly Available Content Database; Coronavirus Research Database
subjects Amplifiers
Antennas
Catalysts
Chemical reactions
Configurations
Electromagnetic properties
Electromagnetism
enhancement
Frequency shift
Gold
localized surface plasmon resonance (LSPR)
Material properties
Nanomaterials
Nanoparticles
nanorods
Nanospheres
Nanowires
Numerical methods
Optical properties
Photocatalysis
Receivers & amplifiers
Resonance
Silicon
Silicon dioxide
Silver
silver/gold core-shell
Simulation
Surface chemistry
title Heterogeneous Nanoplasmonic Amplifiers for Photocatalysis’s Application: A Theoretical Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Nanoplasmonic%20Amplifiers%20for%20Photocatalysis%E2%80%99s%20Application:%20A%20Theoretical%20Study&rft.jtitle=Catalysts&rft.au=Awada,%20Chawki&rft.date=2022-07-01&rft.volume=12&rft.issue=7&rft.spage=771&rft.pages=771-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12070771&rft_dat=%3Cproquest_doaj_%3E2693969454%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3041b57c31d921481344752055850db6600052d1b2e4750467908febbffea5a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2693969454&rft_id=info:pmid/&rfr_iscdi=true