Loading…

Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts

The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN...

Full description

Saved in:
Bibliographic Details
Published in:Heritage science 2024-03, Vol.12 (1), p.75-15, Article 75
Main Authors: Cucci, Costanza, Guidi, Tommaso, Picollo, Marcello, Stefani, Lorenzo, Python, Lorenzo, Argenti, Fabrizio, Barucci, Andrea
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013
cites cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013
container_end_page 15
container_issue 1
container_start_page 75
container_title Heritage science
container_volume 12
creator Cucci, Costanza
Guidi, Tommaso
Picollo, Marcello
Stefani, Lorenzo
Python, Lorenzo
Argenti, Fabrizio
Barucci, Andrea
description The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.
doi_str_mv 10.1186/s40494-024-01182-9
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75</doaj_id><sourcerecordid>2933274530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</originalsourceid><addsrcrecordid>eNp9UctKxTAQLaKgqD_gKuC6Os2jbZYivkBwo-swzaP0em1qkir37829FXXlQJjJzDknj1MUZxVcVFVbX0YOXPISaF65QUu5VxxREFA2nIv9P_VhcRrjCnJIyWjdHBXv95vJhjhZnQKuyfCG_TD2BEdDtB8__HpOgx_zZLRz2KX06cNrJM4HgnP_ZsdkDTFez9sSt2jiXRbQQ96Tm34zpQFHgiFZhzrFk-LA4Tra0-98XLzc3jxf35ePT3cP11ePpeZUptLU4HRbd5lT14aBREaBaic600loUYiuFRINhUo7oG1jpLNWshqE5hIqdlw8LLrG40pNIT8tbJTHQe0aPvQq32nQa6sAdMskd1AZy1HbLFZ1iE0jJaJuRNY6X7Sm4N9nG5Na-Tnkb4mKSsZowwWDjKILSgcfY7Du59QK1NYptTilslNq55SSmcQWUszgsbfhV_of1he2U5jL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933274530</pqid></control><display><type>article</type><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</creator><creatorcontrib>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</creatorcontrib><description>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</description><identifier>ISSN: 2050-7445</identifier><identifier>EISSN: 2050-7445</identifier><identifier>DOI: 10.1186/s40494-024-01182-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ancient Egyptian hieroglyphs ; Artificial neural networks ; Chemistry and Materials Science ; Color imagery ; Convolutional neural networks ; Data acquisition ; Degradation ; Egyptian civilization ; Hyperspectral imaging ; Image enhancement ; Image segmentation ; Materials Science ; Near infrared radiation ; Neural networks ; Segmentation ; Symbols ; Text recognition ; The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022 ; Vis-NIR reflectance hyperspectral imaging</subject><ispartof>Heritage science, 2024-03, Vol.12 (1), p.75-15, Article 75</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</citedby><cites>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933274530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933274530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Cucci, Costanza</creatorcontrib><creatorcontrib>Guidi, Tommaso</creatorcontrib><creatorcontrib>Picollo, Marcello</creatorcontrib><creatorcontrib>Stefani, Lorenzo</creatorcontrib><creatorcontrib>Python, Lorenzo</creatorcontrib><creatorcontrib>Argenti, Fabrizio</creatorcontrib><creatorcontrib>Barucci, Andrea</creatorcontrib><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><title>Heritage science</title><addtitle>Herit Sci</addtitle><description>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</description><subject>Ancient Egyptian hieroglyphs</subject><subject>Artificial neural networks</subject><subject>Chemistry and Materials Science</subject><subject>Color imagery</subject><subject>Convolutional neural networks</subject><subject>Data acquisition</subject><subject>Degradation</subject><subject>Egyptian civilization</subject><subject>Hyperspectral imaging</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Materials Science</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Segmentation</subject><subject>Symbols</subject><subject>Text recognition</subject><subject>The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022</subject><subject>Vis-NIR reflectance hyperspectral imaging</subject><issn>2050-7445</issn><issn>2050-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKxTAQLaKgqD_gKuC6Os2jbZYivkBwo-swzaP0em1qkir37829FXXlQJjJzDknj1MUZxVcVFVbX0YOXPISaF65QUu5VxxREFA2nIv9P_VhcRrjCnJIyWjdHBXv95vJhjhZnQKuyfCG_TD2BEdDtB8__HpOgx_zZLRz2KX06cNrJM4HgnP_ZsdkDTFez9sSt2jiXRbQQ96Tm34zpQFHgiFZhzrFk-LA4Tra0-98XLzc3jxf35ePT3cP11ePpeZUptLU4HRbd5lT14aBREaBaic600loUYiuFRINhUo7oG1jpLNWshqE5hIqdlw8LLrG40pNIT8tbJTHQe0aPvQq32nQa6sAdMskd1AZy1HbLFZ1iE0jJaJuRNY6X7Sm4N9nG5Na-Tnkb4mKSsZowwWDjKILSgcfY7Du59QK1NYptTilslNq55SSmcQWUszgsbfhV_of1he2U5jL</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Cucci, Costanza</creator><creator>Guidi, Tommaso</creator><creator>Picollo, Marcello</creator><creator>Stefani, Lorenzo</creator><creator>Python, Lorenzo</creator><creator>Argenti, Fabrizio</creator><creator>Barucci, Andrea</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20240301</creationdate><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><author>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ancient Egyptian hieroglyphs</topic><topic>Artificial neural networks</topic><topic>Chemistry and Materials Science</topic><topic>Color imagery</topic><topic>Convolutional neural networks</topic><topic>Data acquisition</topic><topic>Degradation</topic><topic>Egyptian civilization</topic><topic>Hyperspectral imaging</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Materials Science</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Segmentation</topic><topic>Symbols</topic><topic>Text recognition</topic><topic>The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022</topic><topic>Vis-NIR reflectance hyperspectral imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cucci, Costanza</creatorcontrib><creatorcontrib>Guidi, Tommaso</creatorcontrib><creatorcontrib>Picollo, Marcello</creatorcontrib><creatorcontrib>Stefani, Lorenzo</creatorcontrib><creatorcontrib>Python, Lorenzo</creatorcontrib><creatorcontrib>Argenti, Fabrizio</creatorcontrib><creatorcontrib>Barucci, Andrea</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heritage science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cucci, Costanza</au><au>Guidi, Tommaso</au><au>Picollo, Marcello</au><au>Stefani, Lorenzo</au><au>Python, Lorenzo</au><au>Argenti, Fabrizio</au><au>Barucci, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</atitle><jtitle>Heritage science</jtitle><stitle>Herit Sci</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>75</spage><epage>15</epage><pages>75-15</pages><artnum>75</artnum><issn>2050-7445</issn><eissn>2050-7445</eissn><abstract>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40494-024-01182-9</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7445
ispartof Heritage science, 2024-03, Vol.12 (1), p.75-15, Article 75
issn 2050-7445
2050-7445
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Ancient Egyptian hieroglyphs
Artificial neural networks
Chemistry and Materials Science
Color imagery
Convolutional neural networks
Data acquisition
Degradation
Egyptian civilization
Hyperspectral imaging
Image enhancement
Image segmentation
Materials Science
Near infrared radiation
Neural networks
Segmentation
Symbols
Text recognition
The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022
Vis-NIR reflectance hyperspectral imaging
title Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20imaging%20and%20convolutional%20neural%20networks%20for%20augmented%20documentation%20of%20ancient%20Egyptian%20artefacts&rft.jtitle=Heritage%20science&rft.au=Cucci,%20Costanza&rft.date=2024-03-01&rft.volume=12&rft.issue=1&rft.spage=75&rft.epage=15&rft.pages=75-15&rft.artnum=75&rft.issn=2050-7445&rft.eissn=2050-7445&rft_id=info:doi/10.1186/s40494-024-01182-9&rft_dat=%3Cproquest_doaj_%3E2933274530%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933274530&rft_id=info:pmid/&rfr_iscdi=true