Loading…
Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts
The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN...
Saved in:
Published in: | Heritage science 2024-03, Vol.12 (1), p.75-15, Article 75 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 75 |
container_title | Heritage science |
container_volume | 12 |
creator | Cucci, Costanza Guidi, Tommaso Picollo, Marcello Stefani, Lorenzo Python, Lorenzo Argenti, Fabrizio Barucci, Andrea |
description | The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images. |
doi_str_mv | 10.1186/s40494-024-01182-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75</doaj_id><sourcerecordid>2933274530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</originalsourceid><addsrcrecordid>eNp9UctKxTAQLaKgqD_gKuC6Os2jbZYivkBwo-swzaP0em1qkir37829FXXlQJjJzDknj1MUZxVcVFVbX0YOXPISaF65QUu5VxxREFA2nIv9P_VhcRrjCnJIyWjdHBXv95vJhjhZnQKuyfCG_TD2BEdDtB8__HpOgx_zZLRz2KX06cNrJM4HgnP_ZsdkDTFez9sSt2jiXRbQQ96Tm34zpQFHgiFZhzrFk-LA4Tra0-98XLzc3jxf35ePT3cP11ePpeZUptLU4HRbd5lT14aBREaBaic600loUYiuFRINhUo7oG1jpLNWshqE5hIqdlw8LLrG40pNIT8tbJTHQe0aPvQq32nQa6sAdMskd1AZy1HbLFZ1iE0jJaJuRNY6X7Sm4N9nG5Na-Tnkb4mKSsZowwWDjKILSgcfY7Du59QK1NYptTilslNq55SSmcQWUszgsbfhV_of1he2U5jL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933274530</pqid></control><display><type>article</type><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</creator><creatorcontrib>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</creatorcontrib><description>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</description><identifier>ISSN: 2050-7445</identifier><identifier>EISSN: 2050-7445</identifier><identifier>DOI: 10.1186/s40494-024-01182-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ancient Egyptian hieroglyphs ; Artificial neural networks ; Chemistry and Materials Science ; Color imagery ; Convolutional neural networks ; Data acquisition ; Degradation ; Egyptian civilization ; Hyperspectral imaging ; Image enhancement ; Image segmentation ; Materials Science ; Near infrared radiation ; Neural networks ; Segmentation ; Symbols ; Text recognition ; The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022 ; Vis-NIR reflectance hyperspectral imaging</subject><ispartof>Heritage science, 2024-03, Vol.12 (1), p.75-15, Article 75</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</citedby><cites>FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2933274530/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2933274530?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Cucci, Costanza</creatorcontrib><creatorcontrib>Guidi, Tommaso</creatorcontrib><creatorcontrib>Picollo, Marcello</creatorcontrib><creatorcontrib>Stefani, Lorenzo</creatorcontrib><creatorcontrib>Python, Lorenzo</creatorcontrib><creatorcontrib>Argenti, Fabrizio</creatorcontrib><creatorcontrib>Barucci, Andrea</creatorcontrib><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><title>Heritage science</title><addtitle>Herit Sci</addtitle><description>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</description><subject>Ancient Egyptian hieroglyphs</subject><subject>Artificial neural networks</subject><subject>Chemistry and Materials Science</subject><subject>Color imagery</subject><subject>Convolutional neural networks</subject><subject>Data acquisition</subject><subject>Degradation</subject><subject>Egyptian civilization</subject><subject>Hyperspectral imaging</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Materials Science</subject><subject>Near infrared radiation</subject><subject>Neural networks</subject><subject>Segmentation</subject><subject>Symbols</subject><subject>Text recognition</subject><subject>The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022</subject><subject>Vis-NIR reflectance hyperspectral imaging</subject><issn>2050-7445</issn><issn>2050-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UctKxTAQLaKgqD_gKuC6Os2jbZYivkBwo-swzaP0em1qkir37829FXXlQJjJzDknj1MUZxVcVFVbX0YOXPISaF65QUu5VxxREFA2nIv9P_VhcRrjCnJIyWjdHBXv95vJhjhZnQKuyfCG_TD2BEdDtB8__HpOgx_zZLRz2KX06cNrJM4HgnP_ZsdkDTFez9sSt2jiXRbQQ96Tm34zpQFHgiFZhzrFk-LA4Tra0-98XLzc3jxf35ePT3cP11ePpeZUptLU4HRbd5lT14aBREaBaic600loUYiuFRINhUo7oG1jpLNWshqE5hIqdlw8LLrG40pNIT8tbJTHQe0aPvQq32nQa6sAdMskd1AZy1HbLFZ1iE0jJaJuRNY6X7Sm4N9nG5Na-Tnkb4mKSsZowwWDjKILSgcfY7Du59QK1NYptTilslNq55SSmcQWUszgsbfhV_of1he2U5jL</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Cucci, Costanza</creator><creator>Guidi, Tommaso</creator><creator>Picollo, Marcello</creator><creator>Stefani, Lorenzo</creator><creator>Python, Lorenzo</creator><creator>Argenti, Fabrizio</creator><creator>Barucci, Andrea</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20240301</creationdate><title>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</title><author>Cucci, Costanza ; Guidi, Tommaso ; Picollo, Marcello ; Stefani, Lorenzo ; Python, Lorenzo ; Argenti, Fabrizio ; Barucci, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ancient Egyptian hieroglyphs</topic><topic>Artificial neural networks</topic><topic>Chemistry and Materials Science</topic><topic>Color imagery</topic><topic>Convolutional neural networks</topic><topic>Data acquisition</topic><topic>Degradation</topic><topic>Egyptian civilization</topic><topic>Hyperspectral imaging</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Materials Science</topic><topic>Near infrared radiation</topic><topic>Neural networks</topic><topic>Segmentation</topic><topic>Symbols</topic><topic>Text recognition</topic><topic>The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022</topic><topic>Vis-NIR reflectance hyperspectral imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cucci, Costanza</creatorcontrib><creatorcontrib>Guidi, Tommaso</creatorcontrib><creatorcontrib>Picollo, Marcello</creatorcontrib><creatorcontrib>Stefani, Lorenzo</creatorcontrib><creatorcontrib>Python, Lorenzo</creatorcontrib><creatorcontrib>Argenti, Fabrizio</creatorcontrib><creatorcontrib>Barucci, Andrea</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heritage science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cucci, Costanza</au><au>Guidi, Tommaso</au><au>Picollo, Marcello</au><au>Stefani, Lorenzo</au><au>Python, Lorenzo</au><au>Argenti, Fabrizio</au><au>Barucci, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts</atitle><jtitle>Heritage science</jtitle><stitle>Herit Sci</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>75</spage><epage>15</epage><pages>75-15</pages><artnum>75</artnum><issn>2050-7445</issn><eissn>2050-7445</eissn><abstract>The study aims at investigating the use of reflectance Hyperspectral Imaging (HSI) in the Visible (Vis) and Near Infrared (NIR) range in combination with Deep Convolutional Neural Networks (CNN) to address the tasks related to ancient Egyptian hieroglyphs recognition. Recently, well-established CNN architectures trained to address segmentation of objects within images have been successfully tested also for trial sets of hieroglyphs. In real conditions, however, the surfaces of the artefacts can be highly degraded, featuring corrupted and scarcely readable inscriptions which highly reduce the CNNs capabilities in automated recognition of symbols. In this study, the use of HSI technique in the extended Vis-NIR range is proposed to retrieve readability of degraded symbols by exploiting spectral images. Using different algorithmic chains, HSI data are processed to obtain enhanced images to be fed to the CNN architectures. In this pilot study, an ancient Egyptian coffin (XXV Dynasty), featuring a degraded hieroglyphic inscription, was used as a benchmark to test, in real conditions, the proposed methodological approaches. A set of Vis-NIR HSI data acquired on-site, in the framework of a non-invasive diagnostic campaign, was used in combination with CNN architectures to perform hieroglyphs segmentation. The outcomes of the different methodological approaches are presented and compared to each other and to the results obtained using standard RGB images.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40494-024-01182-9</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7445 |
ispartof | Heritage science, 2024-03, Vol.12 (1), p.75-15, Article 75 |
issn | 2050-7445 2050-7445 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_00c8394f01de4ace87d1baa7799aac75 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Ancient Egyptian hieroglyphs Artificial neural networks Chemistry and Materials Science Color imagery Convolutional neural networks Data acquisition Degradation Egyptian civilization Hyperspectral imaging Image enhancement Image segmentation Materials Science Near infrared radiation Neural networks Segmentation Symbols Text recognition The Future of Heritage Science and Technologies: Papers from Florence Heri-Tech 2022 Vis-NIR reflectance hyperspectral imaging |
title | Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20imaging%20and%20convolutional%20neural%20networks%20for%20augmented%20documentation%20of%20ancient%20Egyptian%20artefacts&rft.jtitle=Heritage%20science&rft.au=Cucci,%20Costanza&rft.date=2024-03-01&rft.volume=12&rft.issue=1&rft.spage=75&rft.epage=15&rft.pages=75-15&rft.artnum=75&rft.issn=2050-7445&rft.eissn=2050-7445&rft_id=info:doi/10.1186/s40494-024-01182-9&rft_dat=%3Cproquest_doaj_%3E2933274530%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-d60fc86bfac66d309a3202cf5bdb908a55b859ad201cf0287d9fee93605c49013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933274530&rft_id=info:pmid/&rfr_iscdi=true |