Loading…
SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants
The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plant...
Saved in:
Published in: | Plant direct 2021-12, Vol.5 (12), p.e370-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363 |
---|---|
cites | cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | e370 |
container_title | Plant direct |
container_volume | 5 |
creator | Sakamoto, Ayako N. Sakamoto, Tomoaki Yokota, Yuichiro Teranishi, Mika Yoshiyama, Kaoru O. Kimura, Seisuke |
description | The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants. |
doi_str_mv | 10.1002/pld3.370 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b</doaj_id><sourcerecordid>2614977116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</originalsourceid><addsrcrecordid>eNp1ks1qFTEYhgdRbKkFr0ACblx0av6T2QilrbVwsELrOuRvxhxmJmMy09JdL8Fr9ErM8dTaCq4Svjx5-PLlrarXCB4iCPH7qXfkkAj4rNrFVLCaUsaeP9rvVPs5r2FBkeBQspfVDqGNlITR3Wp9eXGGDoAGU6_H-efdjzx5G9pgwaDz7BNIvlt6PccEYgtOPh8Bpwfd-VLPUxyzzwcgptCFUc_egTbFAYxxvNbZlmsJFKvbuvOr6kWr--z379e96uvH06vjT_Xq4uz8-GhVW44orIVzRrcGMtgg4phm0mLaokZSwrG0BHHLrWFYIMN0eR7DVDcUM4wdE4xwsledb70u6rWaUhh0ulVRB_W7EFOndJqD7b2C0DWGcdN4KKmx0HgiGigE5a5lRJri-rB1TYsZvLN-nJPun0ifnozhm-ritZICIUFlEby7F6T4ffF5VkPI1vdlIj4uWWGOBBacMVjQt_-g67iksYxqQ9FGFCX_K7Qp5px8-9AMgmqTB7XJgyp5KOibx80_gH9-vwD1FrgJvb_9r0h9WZ2QjfAXtBq-GA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614977116</pqid></control><display><type>article</type><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</creator><creatorcontrib>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</creatorcontrib><description>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</description><identifier>ISSN: 2475-4455</identifier><identifier>EISSN: 2475-4455</identifier><identifier>DOI: 10.1002/pld3.370</identifier><identifier>PMID: 34988354</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Amino acids ; Apoptosis ; Bleomycin ; Cell cycle ; CRISPR ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA repair ; Genes ; Genomes ; Metabolism ; Mutation ; Original Research ; Plants ; Proteins ; Transcription factors ; Transcriptomes ; Ultraviolet radiation</subject><ispartof>Plant direct, 2021-12, Vol.5 (12), p.e370-n/a</ispartof><rights>2021 The Authors. published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</citedby><cites>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</cites><orcidid>0000-0001-6983-7587 ; 0000-0002-1583-0993 ; 0000-0003-1076-6395 ; 0000-0002-6796-3675 ; 0000-0002-9234-4614 ; 0000-0002-8115-4778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2614977116/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2614977116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34988354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamoto, Ayako N.</creatorcontrib><creatorcontrib>Sakamoto, Tomoaki</creatorcontrib><creatorcontrib>Yokota, Yuichiro</creatorcontrib><creatorcontrib>Teranishi, Mika</creatorcontrib><creatorcontrib>Yoshiyama, Kaoru O.</creatorcontrib><creatorcontrib>Kimura, Seisuke</creatorcontrib><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><title>Plant direct</title><addtitle>Plant Direct</addtitle><description>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</description><subject>Amino acids</subject><subject>Apoptosis</subject><subject>Bleomycin</subject><subject>Cell cycle</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Genes</subject><subject>Genomes</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Original Research</subject><subject>Plants</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Ultraviolet radiation</subject><issn>2475-4455</issn><issn>2475-4455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1qFTEYhgdRbKkFr0ACblx0av6T2QilrbVwsELrOuRvxhxmJmMy09JdL8Fr9ErM8dTaCq4Svjx5-PLlrarXCB4iCPH7qXfkkAj4rNrFVLCaUsaeP9rvVPs5r2FBkeBQspfVDqGNlITR3Wp9eXGGDoAGU6_H-efdjzx5G9pgwaDz7BNIvlt6PccEYgtOPh8Bpwfd-VLPUxyzzwcgptCFUc_egTbFAYxxvNbZlmsJFKvbuvOr6kWr--z379e96uvH06vjT_Xq4uz8-GhVW44orIVzRrcGMtgg4phm0mLaokZSwrG0BHHLrWFYIMN0eR7DVDcUM4wdE4xwsledb70u6rWaUhh0ulVRB_W7EFOndJqD7b2C0DWGcdN4KKmx0HgiGigE5a5lRJri-rB1TYsZvLN-nJPun0ifnozhm-ritZICIUFlEby7F6T4ffF5VkPI1vdlIj4uWWGOBBacMVjQt_-g67iksYxqQ9FGFCX_K7Qp5px8-9AMgmqTB7XJgyp5KOibx80_gH9-vwD1FrgJvb_9r0h9WZ2QjfAXtBq-GA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sakamoto, Ayako N.</creator><creator>Sakamoto, Tomoaki</creator><creator>Yokota, Yuichiro</creator><creator>Teranishi, Mika</creator><creator>Yoshiyama, Kaoru O.</creator><creator>Kimura, Seisuke</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6983-7587</orcidid><orcidid>https://orcid.org/0000-0002-1583-0993</orcidid><orcidid>https://orcid.org/0000-0003-1076-6395</orcidid><orcidid>https://orcid.org/0000-0002-6796-3675</orcidid><orcidid>https://orcid.org/0000-0002-9234-4614</orcidid><orcidid>https://orcid.org/0000-0002-8115-4778</orcidid></search><sort><creationdate>202112</creationdate><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><author>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Apoptosis</topic><topic>Bleomycin</topic><topic>Cell cycle</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Genes</topic><topic>Genomes</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Original Research</topic><topic>Plants</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamoto, Ayako N.</creatorcontrib><creatorcontrib>Sakamoto, Tomoaki</creatorcontrib><creatorcontrib>Yokota, Yuichiro</creatorcontrib><creatorcontrib>Teranishi, Mika</creatorcontrib><creatorcontrib>Yoshiyama, Kaoru O.</creatorcontrib><creatorcontrib>Kimura, Seisuke</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plant direct</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamoto, Ayako N.</au><au>Sakamoto, Tomoaki</au><au>Yokota, Yuichiro</au><au>Teranishi, Mika</au><au>Yoshiyama, Kaoru O.</au><au>Kimura, Seisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</atitle><jtitle>Plant direct</jtitle><addtitle>Plant Direct</addtitle><date>2021-12</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>e370</spage><epage>n/a</epage><pages>e370-n/a</pages><issn>2475-4455</issn><eissn>2475-4455</eissn><abstract>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>34988354</pmid><doi>10.1002/pld3.370</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6983-7587</orcidid><orcidid>https://orcid.org/0000-0002-1583-0993</orcidid><orcidid>https://orcid.org/0000-0003-1076-6395</orcidid><orcidid>https://orcid.org/0000-0002-6796-3675</orcidid><orcidid>https://orcid.org/0000-0002-9234-4614</orcidid><orcidid>https://orcid.org/0000-0002-8115-4778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2475-4455 |
ispartof | Plant direct, 2021-12, Vol.5 (12), p.e370-n/a |
issn | 2475-4455 2475-4455 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central |
subjects | Amino acids Apoptosis Bleomycin Cell cycle CRISPR Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA repair Genes Genomes Metabolism Mutation Original Research Plants Proteins Transcription factors Transcriptomes Ultraviolet radiation |
title | SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOG1,%20a%20plant%E2%80%90specific%20master%20regulator%20of%20DNA%20damage%20responses,%20originated%20from%20nonvascular%20land%20plants&rft.jtitle=Plant%20direct&rft.au=Sakamoto,%20Ayako%20N.&rft.date=2021-12&rft.volume=5&rft.issue=12&rft.spage=e370&rft.epage=n/a&rft.pages=e370-n/a&rft.issn=2475-4455&rft.eissn=2475-4455&rft_id=info:doi/10.1002/pld3.370&rft_dat=%3Cproquest_doaj_%3E2614977116%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2614977116&rft_id=info:pmid/34988354&rfr_iscdi=true |