Loading…

SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants

The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plant...

Full description

Saved in:
Bibliographic Details
Published in:Plant direct 2021-12, Vol.5 (12), p.e370-n/a
Main Authors: Sakamoto, Ayako N., Sakamoto, Tomoaki, Yokota, Yuichiro, Teranishi, Mika, Yoshiyama, Kaoru O., Kimura, Seisuke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363
cites cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363
container_end_page n/a
container_issue 12
container_start_page e370
container_title Plant direct
container_volume 5
creator Sakamoto, Ayako N.
Sakamoto, Tomoaki
Yokota, Yuichiro
Teranishi, Mika
Yoshiyama, Kaoru O.
Kimura, Seisuke
description The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.
doi_str_mv 10.1002/pld3.370
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b</doaj_id><sourcerecordid>2614977116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</originalsourceid><addsrcrecordid>eNp1ks1qFTEYhgdRbKkFr0ACblx0av6T2QilrbVwsELrOuRvxhxmJmMy09JdL8Fr9ErM8dTaCq4Svjx5-PLlrarXCB4iCPH7qXfkkAj4rNrFVLCaUsaeP9rvVPs5r2FBkeBQspfVDqGNlITR3Wp9eXGGDoAGU6_H-efdjzx5G9pgwaDz7BNIvlt6PccEYgtOPh8Bpwfd-VLPUxyzzwcgptCFUc_egTbFAYxxvNbZlmsJFKvbuvOr6kWr--z379e96uvH06vjT_Xq4uz8-GhVW44orIVzRrcGMtgg4phm0mLaokZSwrG0BHHLrWFYIMN0eR7DVDcUM4wdE4xwsledb70u6rWaUhh0ulVRB_W7EFOndJqD7b2C0DWGcdN4KKmx0HgiGigE5a5lRJri-rB1TYsZvLN-nJPun0ifnozhm-ritZICIUFlEby7F6T4ffF5VkPI1vdlIj4uWWGOBBacMVjQt_-g67iksYxqQ9FGFCX_K7Qp5px8-9AMgmqTB7XJgyp5KOibx80_gH9-vwD1FrgJvb_9r0h9WZ2QjfAXtBq-GA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614977116</pqid></control><display><type>article</type><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</creator><creatorcontrib>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</creatorcontrib><description>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</description><identifier>ISSN: 2475-4455</identifier><identifier>EISSN: 2475-4455</identifier><identifier>DOI: 10.1002/pld3.370</identifier><identifier>PMID: 34988354</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Amino acids ; Apoptosis ; Bleomycin ; Cell cycle ; CRISPR ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA repair ; Genes ; Genomes ; Metabolism ; Mutation ; Original Research ; Plants ; Proteins ; Transcription factors ; Transcriptomes ; Ultraviolet radiation</subject><ispartof>Plant direct, 2021-12, Vol.5 (12), p.e370-n/a</ispartof><rights>2021 The Authors. published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</citedby><cites>FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</cites><orcidid>0000-0001-6983-7587 ; 0000-0002-1583-0993 ; 0000-0003-1076-6395 ; 0000-0002-6796-3675 ; 0000-0002-9234-4614 ; 0000-0002-8115-4778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2614977116/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2614977116?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,75096</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34988354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sakamoto, Ayako N.</creatorcontrib><creatorcontrib>Sakamoto, Tomoaki</creatorcontrib><creatorcontrib>Yokota, Yuichiro</creatorcontrib><creatorcontrib>Teranishi, Mika</creatorcontrib><creatorcontrib>Yoshiyama, Kaoru O.</creatorcontrib><creatorcontrib>Kimura, Seisuke</creatorcontrib><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><title>Plant direct</title><addtitle>Plant Direct</addtitle><description>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</description><subject>Amino acids</subject><subject>Apoptosis</subject><subject>Bleomycin</subject><subject>Cell cycle</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Genes</subject><subject>Genomes</subject><subject>Metabolism</subject><subject>Mutation</subject><subject>Original Research</subject><subject>Plants</subject><subject>Proteins</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Ultraviolet radiation</subject><issn>2475-4455</issn><issn>2475-4455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1qFTEYhgdRbKkFr0ACblx0av6T2QilrbVwsELrOuRvxhxmJmMy09JdL8Fr9ErM8dTaCq4Svjx5-PLlrarXCB4iCPH7qXfkkAj4rNrFVLCaUsaeP9rvVPs5r2FBkeBQspfVDqGNlITR3Wp9eXGGDoAGU6_H-efdjzx5G9pgwaDz7BNIvlt6PccEYgtOPh8Bpwfd-VLPUxyzzwcgptCFUc_egTbFAYxxvNbZlmsJFKvbuvOr6kWr--z379e96uvH06vjT_Xq4uz8-GhVW44orIVzRrcGMtgg4phm0mLaokZSwrG0BHHLrWFYIMN0eR7DVDcUM4wdE4xwsledb70u6rWaUhh0ulVRB_W7EFOndJqD7b2C0DWGcdN4KKmx0HgiGigE5a5lRJri-rB1TYsZvLN-nJPun0ifnozhm-ritZICIUFlEby7F6T4ffF5VkPI1vdlIj4uWWGOBBacMVjQt_-g67iksYxqQ9FGFCX_K7Qp5px8-9AMgmqTB7XJgyp5KOibx80_gH9-vwD1FrgJvb_9r0h9WZ2QjfAXtBq-GA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sakamoto, Ayako N.</creator><creator>Sakamoto, Tomoaki</creator><creator>Yokota, Yuichiro</creator><creator>Teranishi, Mika</creator><creator>Yoshiyama, Kaoru O.</creator><creator>Kimura, Seisuke</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6983-7587</orcidid><orcidid>https://orcid.org/0000-0002-1583-0993</orcidid><orcidid>https://orcid.org/0000-0003-1076-6395</orcidid><orcidid>https://orcid.org/0000-0002-6796-3675</orcidid><orcidid>https://orcid.org/0000-0002-9234-4614</orcidid><orcidid>https://orcid.org/0000-0002-8115-4778</orcidid></search><sort><creationdate>202112</creationdate><title>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</title><author>Sakamoto, Ayako N. ; Sakamoto, Tomoaki ; Yokota, Yuichiro ; Teranishi, Mika ; Yoshiyama, Kaoru O. ; Kimura, Seisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amino acids</topic><topic>Apoptosis</topic><topic>Bleomycin</topic><topic>Cell cycle</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Genes</topic><topic>Genomes</topic><topic>Metabolism</topic><topic>Mutation</topic><topic>Original Research</topic><topic>Plants</topic><topic>Proteins</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakamoto, Ayako N.</creatorcontrib><creatorcontrib>Sakamoto, Tomoaki</creatorcontrib><creatorcontrib>Yokota, Yuichiro</creatorcontrib><creatorcontrib>Teranishi, Mika</creatorcontrib><creatorcontrib>Yoshiyama, Kaoru O.</creatorcontrib><creatorcontrib>Kimura, Seisuke</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Plant direct</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakamoto, Ayako N.</au><au>Sakamoto, Tomoaki</au><au>Yokota, Yuichiro</au><au>Teranishi, Mika</au><au>Yoshiyama, Kaoru O.</au><au>Kimura, Seisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants</atitle><jtitle>Plant direct</jtitle><addtitle>Plant Direct</addtitle><date>2021-12</date><risdate>2021</risdate><volume>5</volume><issue>12</issue><spage>e370</spage><epage>n/a</epage><pages>e370-n/a</pages><issn>2475-4455</issn><eissn>2475-4455</eissn><abstract>The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)‐type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9‐mediated gene editing and analyzed the responses to DNA‐damaging treatments. The double‐knockout (KO) sog1a sog1b plants showed resistance to γ‐rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild‐type (WT) and KO plants with γ‐rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle‐related genes were upregulated after γ‐irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant‐specific DDR systems had been established before the emergence of vascular plants.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34988354</pmid><doi>10.1002/pld3.370</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6983-7587</orcidid><orcidid>https://orcid.org/0000-0002-1583-0993</orcidid><orcidid>https://orcid.org/0000-0003-1076-6395</orcidid><orcidid>https://orcid.org/0000-0002-6796-3675</orcidid><orcidid>https://orcid.org/0000-0002-9234-4614</orcidid><orcidid>https://orcid.org/0000-0002-8115-4778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-4455
ispartof Plant direct, 2021-12, Vol.5 (12), p.e370-n/a
issn 2475-4455
2475-4455
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_00d9b56b9e084bc0be37907746df538b
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database; PubMed Central
subjects Amino acids
Apoptosis
Bleomycin
Cell cycle
CRISPR
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
DNA repair
Genes
Genomes
Metabolism
Mutation
Original Research
Plants
Proteins
Transcription factors
Transcriptomes
Ultraviolet radiation
title SOG1, a plant‐specific master regulator of DNA damage responses, originated from nonvascular land plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOG1,%20a%20plant%E2%80%90specific%20master%20regulator%20of%20DNA%20damage%20responses,%20originated%20from%20nonvascular%20land%20plants&rft.jtitle=Plant%20direct&rft.au=Sakamoto,%20Ayako%20N.&rft.date=2021-12&rft.volume=5&rft.issue=12&rft.spage=e370&rft.epage=n/a&rft.pages=e370-n/a&rft.issn=2475-4455&rft.eissn=2475-4455&rft_id=info:doi/10.1002/pld3.370&rft_dat=%3Cproquest_doaj_%3E2614977116%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6140-7ddbafb050913d5a58c24f19843628c316c6cb5271b5a455524a942522d575363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2614977116&rft_id=info:pmid/34988354&rfr_iscdi=true