Loading…
A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo
Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the dev...
Saved in:
Published in: | Nature communications 2021-08, Vol.12 (1), p.4795-4795, Article 4795 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3 |
container_end_page | 4795 |
container_issue | 1 |
container_start_page | 4795 |
container_title | Nature communications |
container_volume | 12 |
creator | Hawk, Josh D. Wisdom, Elias M. Sengupta, Titas Kashlan, Zane D. Colón-Ramos, Daniel A. |
description | Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a
Hydra
-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode
Caenorhabditis elegans
. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.
Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits. |
doi_str_mv | 10.1038/s41467-021-24690-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_011bbc5d4fc94de3b2244cd6f41fc519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_011bbc5d4fc94de3b2244cd6f41fc519</doaj_id><sourcerecordid>2560057126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhhtR3GXcP-Ap4MVLa9JJf-QiLIsfCwte9BzSlcpshkyyJumB8debmV7U9WAuCam3Huot3qZ5zeg7Rvn0PgsmhrGlHWs7MUjaymfNZUcFa9nY8ed_vS-aq5x3tB4u2STEy-aCCz5yMdDL5uc12WLA4kB7fyQYIBo0pMToiY2JJIQYcnFlKS5sST6Gcn9Sk300i9clpiMJuKRYkg5573J2MRAdzNoZEMq5rj0Bl2BxJRMXyMEd4qvmhdU-49XjvWm-f_r47eZLe_f18-3N9V0LPRtLO4rB9pb3QooZNVrACSfJADhn2gyMTcCAokQ7T4JPowEKMOJYDSKduOWb5nblmqh36iG5vU5HFbVT54-YtkqnasmjoozNM_RGWJDCIJ-7TggwgxXM1mlkZX1YWQ_LvEcDGKpv_wT6tBLcvdrGg5p438luqIC3j4AUfyyYi6o7A_ReB4xLVl0_UNqP7Cx98490F5cU6qqqqpc9l7Ia3jTdqoIUc05ofw_DqDolRa1JUTUp6pwUdbLB16ZcxWGL6Q_6P12_ABbxw60</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559539984</pqid></control><display><type>article</type><title>A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo</title><source>Publicly Available Content Database</source><source>Single Title from Nature Journals</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hawk, Josh D. ; Wisdom, Elias M. ; Sengupta, Titas ; Kashlan, Zane D. ; Colón-Ramos, Daniel A.</creator><creatorcontrib>Hawk, Josh D. ; Wisdom, Elias M. ; Sengupta, Titas ; Kashlan, Zane D. ; Colón-Ramos, Daniel A.</creatorcontrib><description>Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a
Hydra
-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode
Caenorhabditis elegans
. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.
Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24690-9</identifier><identifier>PMID: 34373460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/35 ; 14/63 ; 631/378/3920 ; 631/378/548 ; 64/11 ; Calcium (intracellular) ; Calcium ions ; Circuit design ; Circuits ; Genetic code ; Genetic engineering ; Humanities and Social Sciences ; multidisciplinary ; Nematodes ; Nervous system ; Neural networks ; Neuropeptides ; Neurotransmission ; Rewiring ; Science ; Science (multidisciplinary) ; Synapses ; Synaptic transmission ; Tissue culture ; Worms</subject><ispartof>Nature communications, 2021-08, Vol.12 (1), p.4795-4795, Article 4795</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3</citedby><cites>FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3</cites><orcidid>0000-0003-0223-7717 ; 0000-0001-7797-3538 ; 0000-0002-7549-4127</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2559539984/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2559539984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids></links><search><creatorcontrib>Hawk, Josh D.</creatorcontrib><creatorcontrib>Wisdom, Elias M.</creatorcontrib><creatorcontrib>Sengupta, Titas</creatorcontrib><creatorcontrib>Kashlan, Zane D.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><title>A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a
Hydra
-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode
Caenorhabditis elegans
. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.
Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.</description><subject>14/35</subject><subject>14/63</subject><subject>631/378/3920</subject><subject>631/378/548</subject><subject>64/11</subject><subject>Calcium (intracellular)</subject><subject>Calcium ions</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Genetic code</subject><subject>Genetic engineering</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Nematodes</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neuropeptides</subject><subject>Neurotransmission</subject><subject>Rewiring</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synapses</subject><subject>Synaptic transmission</subject><subject>Tissue culture</subject><subject>Worms</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk2LFDEQhhtR3GXcP-Ap4MVLa9JJf-QiLIsfCwte9BzSlcpshkyyJumB8debmV7U9WAuCam3Huot3qZ5zeg7Rvn0PgsmhrGlHWs7MUjaymfNZUcFa9nY8ed_vS-aq5x3tB4u2STEy-aCCz5yMdDL5uc12WLA4kB7fyQYIBo0pMToiY2JJIQYcnFlKS5sST6Gcn9Sk300i9clpiMJuKRYkg5573J2MRAdzNoZEMq5rj0Bl2BxJRMXyMEd4qvmhdU-49XjvWm-f_r47eZLe_f18-3N9V0LPRtLO4rB9pb3QooZNVrACSfJADhn2gyMTcCAokQ7T4JPowEKMOJYDSKduOWb5nblmqh36iG5vU5HFbVT54-YtkqnasmjoozNM_RGWJDCIJ-7TggwgxXM1mlkZX1YWQ_LvEcDGKpv_wT6tBLcvdrGg5p438luqIC3j4AUfyyYi6o7A_ReB4xLVl0_UNqP7Cx98490F5cU6qqqqpc9l7Ia3jTdqoIUc05ofw_DqDolRa1JUTUp6pwUdbLB16ZcxWGL6Q_6P12_ABbxw60</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Hawk, Josh D.</creator><creator>Wisdom, Elias M.</creator><creator>Sengupta, Titas</creator><creator>Kashlan, Zane D.</creator><creator>Colón-Ramos, Daniel A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0223-7717</orcidid><orcidid>https://orcid.org/0000-0001-7797-3538</orcidid><orcidid>https://orcid.org/0000-0002-7549-4127</orcidid></search><sort><creationdate>20210809</creationdate><title>A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo</title><author>Hawk, Josh D. ; Wisdom, Elias M. ; Sengupta, Titas ; Kashlan, Zane D. ; Colón-Ramos, Daniel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/35</topic><topic>14/63</topic><topic>631/378/3920</topic><topic>631/378/548</topic><topic>64/11</topic><topic>Calcium (intracellular)</topic><topic>Calcium ions</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Genetic code</topic><topic>Genetic engineering</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Nematodes</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neuropeptides</topic><topic>Neurotransmission</topic><topic>Rewiring</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synapses</topic><topic>Synaptic transmission</topic><topic>Tissue culture</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawk, Josh D.</creatorcontrib><creatorcontrib>Wisdom, Elias M.</creatorcontrib><creatorcontrib>Sengupta, Titas</creatorcontrib><creatorcontrib>Kashlan, Zane D.</creatorcontrib><creatorcontrib>Colón-Ramos, Daniel A.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawk, Josh D.</au><au>Wisdom, Elias M.</au><au>Sengupta, Titas</au><au>Kashlan, Zane D.</au><au>Colón-Ramos, Daniel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2021-08-09</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4795</spage><epage>4795</epage><pages>4795-4795</pages><artnum>4795</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Chemogenetic and optogenetic tools have transformed the field of neuroscience by facilitating the examination and manipulation of existing circuits. Yet, the field lacks tools that enable rational rewiring of circuits via the creation or modification of synaptic relationships. Here we report the development of HySyn, a system designed to reconnect neural circuits in vivo by reconstituting synthetic modulatory neurotransmission. We demonstrate that genetically targeted expression of the two HySyn components, a
Hydra
-derived neuropeptide and its receptor, creates de novo neuromodulatory transmission in a mammalian neuronal tissue culture model and functionally rewires a behavioral circuit in vivo in the nematode
Caenorhabditis elegans
. HySyn can interface with existing optogenetic, chemogenetic and pharmacological approaches to functionally probe synaptic transmission, dissect neuropeptide signaling, or achieve targeted modulation of specific neural circuits and behaviors.
Engineering de novo synapse-like connections between neurons could enhance our understanding of neuronal circuits and how they generate behaviour. The authors present a two-component system that creates synthetic neuromodulatory connections to manipulate intracellular Ca2+ levels in in vivo neural circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34373460</pmid><doi>10.1038/s41467-021-24690-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0223-7717</orcidid><orcidid>https://orcid.org/0000-0001-7797-3538</orcidid><orcidid>https://orcid.org/0000-0002-7549-4127</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-08, Vol.12 (1), p.4795-4795, Article 4795 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_011bbc5d4fc94de3b2244cd6f41fc519 |
source | Publicly Available Content Database; Single Title from Nature Journals; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 14/35 14/63 631/378/3920 631/378/548 64/11 Calcium (intracellular) Calcium ions Circuit design Circuits Genetic code Genetic engineering Humanities and Social Sciences multidisciplinary Nematodes Nervous system Neural networks Neuropeptides Neurotransmission Rewiring Science Science (multidisciplinary) Synapses Synaptic transmission Tissue culture Worms |
title | A genetically encoded tool for reconstituting synthetic modulatory neurotransmission and reconnect neural circuits in vivo |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20genetically%20encoded%20tool%20for%20reconstituting%20synthetic%20modulatory%20neurotransmission%20and%20reconnect%20neural%20circuits%20in%20vivo&rft.jtitle=Nature%20communications&rft.au=Hawk,%20Josh%20D.&rft.date=2021-08-09&rft.volume=12&rft.issue=1&rft.spage=4795&rft.epage=4795&rft.pages=4795-4795&rft.artnum=4795&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24690-9&rft_dat=%3Cproquest_doaj_%3E2560057126%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-746f5f35494beaefce8e891cc331ad6118c1c0e9efb84387dc0cc7e7734e083f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2559539984&rft_id=info:pmid/34373460&rfr_iscdi=true |