Loading…

Localization in Two-Dimensional Quasicrystalline Lattices

We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two o...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2022-11, Vol.24 (11), p.1628
Main Authors: González-García, Luis Antonio, Alva-Sánchez, Héctor, Paredes, Rosario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823
container_end_page
container_issue 11
container_start_page 1628
container_title Entropy (Basel, Switzerland)
container_volume 24
creator González-García, Luis Antonio
Alva-Sánchez, Héctor
Paredes, Rosario
description We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.
doi_str_mv 10.3390/e24111628
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709593</galeid><doaj_id>oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1</doaj_id><sourcerecordid>A745709593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</originalsourceid><addsrcrecordid>eNpdkltrFTEUhQdRbK0--A8O-KIPU3ObXF6EUm-FAyLU57CT2TnmkJnUZKZSf71pTylW8pCw8u21V8LuuteUnHJuyHtkglIqmX7SHVNiTC84IU__OR91L2rdE8I4o_J5d8QlH4yi-rgz2-whxT-wxDxv4ry5_J37j3HCuTYB0ub7CjX6clMXSCnOuNnCskSP9WX3LECq-Op-P-l-fP50ef613377cnF-tu29EMPSG_COAncEmRyCI3xAEpApr4OjOEpOhfaeC-00cEUHqjw2hAsxomOa8ZPu4uA7ZtjbqxInKDc2Q7R3Qi47C6UlSmgJVYgORyKZEQ48AAnEaRIcN5IH2rw-HLyuVjfh6HFeCqRHpo9v5vjT7vK1NVIbKW_DvL03KPnXinWxU6weU4IZ81otU3zQhmpBGvrmP3Sf19K-9I4SkjEldKNOD9QO2gPiHHLr69sacYo-zxhi08-UGBQxg-Gt4N2hwJdca8HwkJ4SezsN9mEa-F_I36T3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734622748</pqid></control><display><type>article</type><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><creator>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</creator><creatorcontrib>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</creatorcontrib><description>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24111628</identifier><identifier>PMID: 36359718</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bose-Einstein condensation ; Bose–Einstein condensates ; Condensates ; Crystal lattices ; Density ; Energy ; Entropy (Information theory) ; Gases ; Gross–Pitaevskii equation ; Lattice sites ; Lattices ; Localization ; localization in quasicrystals ; Quasicrystals ; Symmetry ; Weakly interacting massive particles</subject><ispartof>Entropy (Basel, Switzerland), 2022-11, Vol.24 (11), p.1628</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</cites><orcidid>0000-0002-9173-0513 ; 0000-0001-8855-606X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734622748/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734622748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>González-García, Luis Antonio</creatorcontrib><creatorcontrib>Alva-Sánchez, Héctor</creatorcontrib><creatorcontrib>Paredes, Rosario</creatorcontrib><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><title>Entropy (Basel, Switzerland)</title><description>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</description><subject>Bose-Einstein condensation</subject><subject>Bose–Einstein condensates</subject><subject>Condensates</subject><subject>Crystal lattices</subject><subject>Density</subject><subject>Energy</subject><subject>Entropy (Information theory)</subject><subject>Gases</subject><subject>Gross–Pitaevskii equation</subject><subject>Lattice sites</subject><subject>Lattices</subject><subject>Localization</subject><subject>localization in quasicrystals</subject><subject>Quasicrystals</subject><subject>Symmetry</subject><subject>Weakly interacting massive particles</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFTEUhQdRbK0--A8O-KIPU3ObXF6EUm-FAyLU57CT2TnmkJnUZKZSf71pTylW8pCw8u21V8LuuteUnHJuyHtkglIqmX7SHVNiTC84IU__OR91L2rdE8I4o_J5d8QlH4yi-rgz2-whxT-wxDxv4ry5_J37j3HCuTYB0ub7CjX6clMXSCnOuNnCskSP9WX3LECq-Op-P-l-fP50ef613377cnF-tu29EMPSG_COAncEmRyCI3xAEpApr4OjOEpOhfaeC-00cEUHqjw2hAsxomOa8ZPu4uA7ZtjbqxInKDc2Q7R3Qi47C6UlSmgJVYgORyKZEQ48AAnEaRIcN5IH2rw-HLyuVjfh6HFeCqRHpo9v5vjT7vK1NVIbKW_DvL03KPnXinWxU6weU4IZ81otU3zQhmpBGvrmP3Sf19K-9I4SkjEldKNOD9QO2gPiHHLr69sacYo-zxhi08-UGBQxg-Gt4N2hwJdca8HwkJ4SezsN9mEa-F_I36T3</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>González-García, Luis Antonio</creator><creator>Alva-Sánchez, Héctor</creator><creator>Paredes, Rosario</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9173-0513</orcidid><orcidid>https://orcid.org/0000-0001-8855-606X</orcidid></search><sort><creationdate>20221101</creationdate><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><author>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bose-Einstein condensation</topic><topic>Bose–Einstein condensates</topic><topic>Condensates</topic><topic>Crystal lattices</topic><topic>Density</topic><topic>Energy</topic><topic>Entropy (Information theory)</topic><topic>Gases</topic><topic>Gross–Pitaevskii equation</topic><topic>Lattice sites</topic><topic>Lattices</topic><topic>Localization</topic><topic>localization in quasicrystals</topic><topic>Quasicrystals</topic><topic>Symmetry</topic><topic>Weakly interacting massive particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-García, Luis Antonio</creatorcontrib><creatorcontrib>Alva-Sánchez, Héctor</creatorcontrib><creatorcontrib>Paredes, Rosario</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-García, Luis Antonio</au><au>Alva-Sánchez, Héctor</au><au>Paredes, Rosario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization in Two-Dimensional Quasicrystalline Lattices</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>24</volume><issue>11</issue><spage>1628</spage><pages>1628-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36359718</pmid><doi>10.3390/e24111628</doi><orcidid>https://orcid.org/0000-0002-9173-0513</orcidid><orcidid>https://orcid.org/0000-0001-8855-606X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2022-11, Vol.24 (11), p.1628
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1
source PubMed Central Free; Publicly Available Content Database; Directory of Open Access Journals
subjects Bose-Einstein condensation
Bose–Einstein condensates
Condensates
Crystal lattices
Density
Energy
Entropy (Information theory)
Gases
Gross–Pitaevskii equation
Lattice sites
Lattices
Localization
localization in quasicrystals
Quasicrystals
Symmetry
Weakly interacting massive particles
title Localization in Two-Dimensional Quasicrystalline Lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20in%20Two-Dimensional%20Quasicrystalline%20Lattices&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Gonz%C3%A1lez-Garc%C3%ADa,%20Luis%20Antonio&rft.date=2022-11-01&rft.volume=24&rft.issue=11&rft.spage=1628&rft.pages=1628-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24111628&rft_dat=%3Cgale_doaj_%3EA745709593%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734622748&rft_id=info:pmid/36359718&rft_galeid=A745709593&rfr_iscdi=true