Loading…
Localization in Two-Dimensional Quasicrystalline Lattices
We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two o...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2022-11, Vol.24 (11), p.1628 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823 |
container_end_page | |
container_issue | 11 |
container_start_page | 1628 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 24 |
creator | González-García, Luis Antonio Alva-Sánchez, Héctor Paredes, Rosario |
description | We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries. |
doi_str_mv | 10.3390/e24111628 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745709593</galeid><doaj_id>oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1</doaj_id><sourcerecordid>A745709593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</originalsourceid><addsrcrecordid>eNpdkltrFTEUhQdRbK0--A8O-KIPU3ObXF6EUm-FAyLU57CT2TnmkJnUZKZSf71pTylW8pCw8u21V8LuuteUnHJuyHtkglIqmX7SHVNiTC84IU__OR91L2rdE8I4o_J5d8QlH4yi-rgz2-whxT-wxDxv4ry5_J37j3HCuTYB0ub7CjX6clMXSCnOuNnCskSP9WX3LECq-Op-P-l-fP50ef613377cnF-tu29EMPSG_COAncEmRyCI3xAEpApr4OjOEpOhfaeC-00cEUHqjw2hAsxomOa8ZPu4uA7ZtjbqxInKDc2Q7R3Qi47C6UlSmgJVYgORyKZEQ48AAnEaRIcN5IH2rw-HLyuVjfh6HFeCqRHpo9v5vjT7vK1NVIbKW_DvL03KPnXinWxU6weU4IZ81otU3zQhmpBGvrmP3Sf19K-9I4SkjEldKNOD9QO2gPiHHLr69sacYo-zxhi08-UGBQxg-Gt4N2hwJdca8HwkJ4SezsN9mEa-F_I36T3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734622748</pqid></control><display><type>article</type><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>Directory of Open Access Journals</source><creator>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</creator><creatorcontrib>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</creatorcontrib><description>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e24111628</identifier><identifier>PMID: 36359718</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bose-Einstein condensation ; Bose–Einstein condensates ; Condensates ; Crystal lattices ; Density ; Energy ; Entropy (Information theory) ; Gases ; Gross–Pitaevskii equation ; Lattice sites ; Lattices ; Localization ; localization in quasicrystals ; Quasicrystals ; Symmetry ; Weakly interacting massive particles</subject><ispartof>Entropy (Basel, Switzerland), 2022-11, Vol.24 (11), p.1628</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</cites><orcidid>0000-0002-9173-0513 ; 0000-0001-8855-606X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734622748/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734622748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>González-García, Luis Antonio</creatorcontrib><creatorcontrib>Alva-Sánchez, Héctor</creatorcontrib><creatorcontrib>Paredes, Rosario</creatorcontrib><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><title>Entropy (Basel, Switzerland)</title><description>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</description><subject>Bose-Einstein condensation</subject><subject>Bose–Einstein condensates</subject><subject>Condensates</subject><subject>Crystal lattices</subject><subject>Density</subject><subject>Energy</subject><subject>Entropy (Information theory)</subject><subject>Gases</subject><subject>Gross–Pitaevskii equation</subject><subject>Lattice sites</subject><subject>Lattices</subject><subject>Localization</subject><subject>localization in quasicrystals</subject><subject>Quasicrystals</subject><subject>Symmetry</subject><subject>Weakly interacting massive particles</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkltrFTEUhQdRbK0--A8O-KIPU3ObXF6EUm-FAyLU57CT2TnmkJnUZKZSf71pTylW8pCw8u21V8LuuteUnHJuyHtkglIqmX7SHVNiTC84IU__OR91L2rdE8I4o_J5d8QlH4yi-rgz2-whxT-wxDxv4ry5_J37j3HCuTYB0ub7CjX6clMXSCnOuNnCskSP9WX3LECq-Op-P-l-fP50ef613377cnF-tu29EMPSG_COAncEmRyCI3xAEpApr4OjOEpOhfaeC-00cEUHqjw2hAsxomOa8ZPu4uA7ZtjbqxInKDc2Q7R3Qi47C6UlSmgJVYgORyKZEQ48AAnEaRIcN5IH2rw-HLyuVjfh6HFeCqRHpo9v5vjT7vK1NVIbKW_DvL03KPnXinWxU6weU4IZ81otU3zQhmpBGvrmP3Sf19K-9I4SkjEldKNOD9QO2gPiHHLr69sacYo-zxhi08-UGBQxg-Gt4N2hwJdca8HwkJ4SezsN9mEa-F_I36T3</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>González-García, Luis Antonio</creator><creator>Alva-Sánchez, Héctor</creator><creator>Paredes, Rosario</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9173-0513</orcidid><orcidid>https://orcid.org/0000-0001-8855-606X</orcidid></search><sort><creationdate>20221101</creationdate><title>Localization in Two-Dimensional Quasicrystalline Lattices</title><author>González-García, Luis Antonio ; Alva-Sánchez, Héctor ; Paredes, Rosario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bose-Einstein condensation</topic><topic>Bose–Einstein condensates</topic><topic>Condensates</topic><topic>Crystal lattices</topic><topic>Density</topic><topic>Energy</topic><topic>Entropy (Information theory)</topic><topic>Gases</topic><topic>Gross–Pitaevskii equation</topic><topic>Lattice sites</topic><topic>Lattices</topic><topic>Localization</topic><topic>localization in quasicrystals</topic><topic>Quasicrystals</topic><topic>Symmetry</topic><topic>Weakly interacting massive particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-García, Luis Antonio</creatorcontrib><creatorcontrib>Alva-Sánchez, Héctor</creatorcontrib><creatorcontrib>Paredes, Rosario</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-García, Luis Antonio</au><au>Alva-Sánchez, Héctor</au><au>Paredes, Rosario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization in Two-Dimensional Quasicrystalline Lattices</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>24</volume><issue>11</issue><spage>1628</spage><pages>1628-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>We investigate the emergence of localization in a weakly interacting Bose gas confined in quasicrystalline lattices with three different rotational symmetries: five, eight, and twelve. The analysis, performed at a mean field level and from which localization is detected, relies on the study of two observables: the inverse participation ratio (IPR) and the Shannon entropy in the coordinate space. Those physical quantities were determined from a robust statistical study for the stationary density profiles of the interacting condensate. Localization was identified for each lattice type as a function of the potential depth. Our analysis revealed a range of the potential depths for which the condensate density becomes localized, from partially at random lattice sites to fully in a single site. We found that localization in the case of five-fold rotational symmetry appears for (6ER,9ER), while it occurs in the interval (12ER,15ER) for octagonal and dodecagonal symmetries.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36359718</pmid><doi>10.3390/e24111628</doi><orcidid>https://orcid.org/0000-0002-9173-0513</orcidid><orcidid>https://orcid.org/0000-0001-8855-606X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2022-11, Vol.24 (11), p.1628 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_017eebed06294bacaa0f0b80fb3963f1 |
source | PubMed Central Free; Publicly Available Content Database; Directory of Open Access Journals |
subjects | Bose-Einstein condensation Bose–Einstein condensates Condensates Crystal lattices Density Energy Entropy (Information theory) Gases Gross–Pitaevskii equation Lattice sites Lattices Localization localization in quasicrystals Quasicrystals Symmetry Weakly interacting massive particles |
title | Localization in Two-Dimensional Quasicrystalline Lattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20in%20Two-Dimensional%20Quasicrystalline%20Lattices&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Gonz%C3%A1lez-Garc%C3%ADa,%20Luis%20Antonio&rft.date=2022-11-01&rft.volume=24&rft.issue=11&rft.spage=1628&rft.pages=1628-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e24111628&rft_dat=%3Cgale_doaj_%3EA745709593%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-9acb1a3b0e265fb035e0fe27c8fb1ed63148cc348b8a371517ce5e0344deb2823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734622748&rft_id=info:pmid/36359718&rft_galeid=A745709593&rfr_iscdi=true |