Loading…
Comparative Study on EDM Parameter Optimization for Adsorbed Si3N4–TiN using TOPSIS and GRA Coupled with TLBO Algorithm
Electrical discharge machining is a thermo-physical-based material removal technique. 25 combinations of process variables were formulated with the aid of Taguchi technique for EDM of adsorbed Si3N4–TiN. Machining variables like pulse current, pulse-on time, pulse-off time, dielectric pressure, and...
Saved in:
Published in: | Adsorption science & technology 2022, Vol.2022 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electrical discharge machining is a thermo-physical-based material removal technique. 25 combinations of process variables were formulated with the aid of Taguchi technique for EDM of adsorbed Si3N4–TiN. Machining variables like pulse current, pulse-on time, pulse-off time, dielectric pressure, and spark gap voltage varied, and impact of each variables on the performance metrics (MRR, EWR, SR, ROC, θ, CIR, and CYL) was assessed. MCDM strategies like grey relational analysis and TOPSIS are utilized to find out the ideal arrangement of machining parameters to achieve most acute productivity of the multitude of reactions. Likewise, metaheuristic algorithm in particular GRA combined with teaching-learning-based optimization algorithm is utilized for getting global optimized input factors. Important factors like pulse current, pulse-on time, and spark gap voltage characteristically affect the outputs. It is recognized that the pulse-on time and the pulse current are the most significant input factors than others. The ideal machining parameters in view of GRA and TOPSIS techniques for acquiring better output factors are I, 12 amps; PON, 7 μsec; POFF, 4 μsec; DP, 12 kg/cm2; and SV, 36 volts. |
---|---|
ISSN: | 0263-6174 2048-4038 |
DOI: | 10.1155/2022/4112448 |