Loading…
Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning
With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined pop...
Saved in:
Published in: | Agronomy (Basel) 2024-05, Vol.14 (5), p.1028 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1028 |
container_title | Agronomy (Basel) |
container_volume | 14 |
creator | Jia, Yan Zhao, Yu Ma, Huimiao Gong, Weibin Zou, Detang Wang, Jin Liu, Aixin Zhang, Can Wang, Weiqiang Xu, Ping Yuan, Qianru Wang, Jing Wang, Ziming Zhao, Hongwei |
description | With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China. |
doi_str_mv | 10.3390/agronomy14051028 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0186443004c74928a691b01106aec660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795381470</galeid><doaj_id>oai_doaj_org_article_0186443004c74928a691b01106aec660</doaj_id><sourcerecordid>A795381470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</originalsourceid><addsrcrecordid>eNptkk2PUyEUhm-MJk7G2bskceOmI1zgclnWyczYpI7Gj4Wrm1M4dGhuoQLX2D_hb5a2xo-JsOBw8j7vG8JpmueMXnKu6StYpxjids8ElYy2_aPmrKWKzwTX8vFf9dPmIucNrUsz3lN11vyYBxj32WcSHSn3SK6dQ1OO1_dxN41QfAzkY0mTKVNCAsGS6_DN18AthgIjuQFTYqpEIB-8QXLnS4prDORuKskf8UWw-P2IfvE4WvIaMtoD8BbMvQ9Ilggp-LB-1jxxMGa8-HWeN59vrj9dvZkt390urubLmRG8LbOeCwdcoTNWK2Md66SQzCJnVLXUgeMrNCsNaiX7VvYKOomGc6s1lRYqet4sTr42wmbYJb-FtB8i-OHYiGk9QCrejDhQ1ndCcEqFUUK3PXSarShjtAM0XUer18uT1y7FrxPmMmx9NjiOEDBOeeBMcqk4ZbpKXzyQbuKU6g9UFZW6Fa1q-z-qNdR8H1wsCczBdJgrLXnPhDrEXv5HVbfFrTcxoPO1_w9AT4BJMeeE7ve7GR0OYzQ8HCP-E_lCuyU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059242728</pqid></control><display><type>article</type><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><source>Publicly Available Content Database</source><creator>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</creator><creatorcontrib>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</creatorcontrib><description>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy14051028</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Agriculture ; agronomy ; China ; Crops ; Efficiency ; Ensemble learning ; ensemble learning model ; Environmental factors ; Environmental management ; Fertilizers ; Food security ; Food supply ; Information management ; Learning algorithms ; Machine learning ; Nitrogen ; nitrogen and density management ; nitrogen nutrition index ; Nutrition ; Nutrition assessment ; panicles ; Planting ; Planting density ; Population ; Population structure ; Population studies ; Recommender systems ; Remote sensing ; Rice ; simulation models ; Weather ; yield forecasting</subject><ispartof>Agronomy (Basel), 2024-05, Vol.14 (5), p.1028</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</cites><orcidid>0000-0002-0476-3318 ; 0000-0002-1429-0622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059242728/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059242728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Ma, Huimiao</creatorcontrib><creatorcontrib>Gong, Weibin</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Liu, Aixin</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yuan, Qianru</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><title>Agronomy (Basel)</title><description>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>agronomy</subject><subject>China</subject><subject>Crops</subject><subject>Efficiency</subject><subject>Ensemble learning</subject><subject>ensemble learning model</subject><subject>Environmental factors</subject><subject>Environmental management</subject><subject>Fertilizers</subject><subject>Food security</subject><subject>Food supply</subject><subject>Information management</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Nitrogen</subject><subject>nitrogen and density management</subject><subject>nitrogen nutrition index</subject><subject>Nutrition</subject><subject>Nutrition assessment</subject><subject>panicles</subject><subject>Planting</subject><subject>Planting density</subject><subject>Population</subject><subject>Population structure</subject><subject>Population studies</subject><subject>Recommender systems</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>simulation models</subject><subject>Weather</subject><subject>yield forecasting</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2PUyEUhm-MJk7G2bskceOmI1zgclnWyczYpI7Gj4Wrm1M4dGhuoQLX2D_hb5a2xo-JsOBw8j7vG8JpmueMXnKu6StYpxjids8ElYy2_aPmrKWKzwTX8vFf9dPmIucNrUsz3lN11vyYBxj32WcSHSn3SK6dQ1OO1_dxN41QfAzkY0mTKVNCAsGS6_DN18AthgIjuQFTYqpEIB-8QXLnS4prDORuKskf8UWw-P2IfvE4WvIaMtoD8BbMvQ9Ilggp-LB-1jxxMGa8-HWeN59vrj9dvZkt390urubLmRG8LbOeCwdcoTNWK2Md66SQzCJnVLXUgeMrNCsNaiX7VvYKOomGc6s1lRYqet4sTr42wmbYJb-FtB8i-OHYiGk9QCrejDhQ1ndCcEqFUUK3PXSarShjtAM0XUer18uT1y7FrxPmMmx9NjiOEDBOeeBMcqk4ZbpKXzyQbuKU6g9UFZW6Fa1q-z-qNdR8H1wsCczBdJgrLXnPhDrEXv5HVbfFrTcxoPO1_w9AT4BJMeeE7ve7GR0OYzQ8HCP-E_lCuyU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jia, Yan</creator><creator>Zhao, Yu</creator><creator>Ma, Huimiao</creator><creator>Gong, Weibin</creator><creator>Zou, Detang</creator><creator>Wang, Jin</creator><creator>Liu, Aixin</creator><creator>Zhang, Can</creator><creator>Wang, Weiqiang</creator><creator>Xu, Ping</creator><creator>Yuan, Qianru</creator><creator>Wang, Jing</creator><creator>Wang, Ziming</creator><creator>Zhao, Hongwei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0476-3318</orcidid><orcidid>https://orcid.org/0000-0002-1429-0622</orcidid></search><sort><creationdate>20240501</creationdate><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><author>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>agronomy</topic><topic>China</topic><topic>Crops</topic><topic>Efficiency</topic><topic>Ensemble learning</topic><topic>ensemble learning model</topic><topic>Environmental factors</topic><topic>Environmental management</topic><topic>Fertilizers</topic><topic>Food security</topic><topic>Food supply</topic><topic>Information management</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Nitrogen</topic><topic>nitrogen and density management</topic><topic>nitrogen nutrition index</topic><topic>Nutrition</topic><topic>Nutrition assessment</topic><topic>panicles</topic><topic>Planting</topic><topic>Planting density</topic><topic>Population</topic><topic>Population structure</topic><topic>Population studies</topic><topic>Recommender systems</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>simulation models</topic><topic>Weather</topic><topic>yield forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Ma, Huimiao</creatorcontrib><creatorcontrib>Gong, Weibin</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Liu, Aixin</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yuan, Qianru</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yan</au><au>Zhao, Yu</au><au>Ma, Huimiao</au><au>Gong, Weibin</au><au>Zou, Detang</au><au>Wang, Jin</au><au>Liu, Aixin</au><au>Zhang, Can</au><au>Wang, Weiqiang</au><au>Xu, Ping</au><au>Yuan, Qianru</au><au>Wang, Jing</au><au>Wang, Ziming</au><au>Zhao, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</atitle><jtitle>Agronomy (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>1028</spage><pages>1028-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy14051028</doi><orcidid>https://orcid.org/0000-0002-0476-3318</orcidid><orcidid>https://orcid.org/0000-0002-1429-0622</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4395 |
ispartof | Agronomy (Basel), 2024-05, Vol.14 (5), p.1028 |
issn | 2073-4395 2073-4395 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0186443004c74928a691b01106aec660 |
source | Publicly Available Content Database |
subjects | Agricultural production Agriculture agronomy China Crops Efficiency Ensemble learning ensemble learning model Environmental factors Environmental management Fertilizers Food security Food supply Information management Learning algorithms Machine learning Nitrogen nitrogen and density management nitrogen nutrition index Nutrition Nutrition assessment panicles Planting Planting density Population Population structure Population studies Recommender systems Remote sensing Rice simulation models Weather yield forecasting |
title | Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Effects%20of%20Population%20Structure%20and%20Environmental%20Factors%20on%20Rice%20Nitrogen%20Nutrition%20Index%20and%20Yield%20Based%20on%20Machine%20Learning&rft.jtitle=Agronomy%20(Basel)&rft.au=Jia,%20Yan&rft.date=2024-05-01&rft.volume=14&rft.issue=5&rft.spage=1028&rft.pages=1028-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy14051028&rft_dat=%3Cgale_doaj_%3EA795381470%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059242728&rft_id=info:pmid/&rft_galeid=A795381470&rfr_iscdi=true |