Loading…

Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning

With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined pop...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy (Basel) 2024-05, Vol.14 (5), p.1028
Main Authors: Jia, Yan, Zhao, Yu, Ma, Huimiao, Gong, Weibin, Zou, Detang, Wang, Jin, Liu, Aixin, Zhang, Can, Wang, Weiqiang, Xu, Ping, Yuan, Qianru, Wang, Jing, Wang, Ziming, Zhao, Hongwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3
container_end_page
container_issue 5
container_start_page 1028
container_title Agronomy (Basel)
container_volume 14
creator Jia, Yan
Zhao, Yu
Ma, Huimiao
Gong, Weibin
Zou, Detang
Wang, Jin
Liu, Aixin
Zhang, Can
Wang, Weiqiang
Xu, Ping
Yuan, Qianru
Wang, Jing
Wang, Ziming
Zhao, Hongwei
description With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.
doi_str_mv 10.3390/agronomy14051028
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0186443004c74928a691b01106aec660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795381470</galeid><doaj_id>oai_doaj_org_article_0186443004c74928a691b01106aec660</doaj_id><sourcerecordid>A795381470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</originalsourceid><addsrcrecordid>eNptkk2PUyEUhm-MJk7G2bskceOmI1zgclnWyczYpI7Gj4Wrm1M4dGhuoQLX2D_hb5a2xo-JsOBw8j7vG8JpmueMXnKu6StYpxjids8ElYy2_aPmrKWKzwTX8vFf9dPmIucNrUsz3lN11vyYBxj32WcSHSn3SK6dQ1OO1_dxN41QfAzkY0mTKVNCAsGS6_DN18AthgIjuQFTYqpEIB-8QXLnS4prDORuKskf8UWw-P2IfvE4WvIaMtoD8BbMvQ9Ilggp-LB-1jxxMGa8-HWeN59vrj9dvZkt390urubLmRG8LbOeCwdcoTNWK2Md66SQzCJnVLXUgeMrNCsNaiX7VvYKOomGc6s1lRYqet4sTr42wmbYJb-FtB8i-OHYiGk9QCrejDhQ1ndCcEqFUUK3PXSarShjtAM0XUer18uT1y7FrxPmMmx9NjiOEDBOeeBMcqk4ZbpKXzyQbuKU6g9UFZW6Fa1q-z-qNdR8H1wsCczBdJgrLXnPhDrEXv5HVbfFrTcxoPO1_w9AT4BJMeeE7ve7GR0OYzQ8HCP-E_lCuyU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059242728</pqid></control><display><type>article</type><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><source>Publicly Available Content Database</source><creator>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</creator><creatorcontrib>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</creatorcontrib><description>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</description><identifier>ISSN: 2073-4395</identifier><identifier>EISSN: 2073-4395</identifier><identifier>DOI: 10.3390/agronomy14051028</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Agriculture ; agronomy ; China ; Crops ; Efficiency ; Ensemble learning ; ensemble learning model ; Environmental factors ; Environmental management ; Fertilizers ; Food security ; Food supply ; Information management ; Learning algorithms ; Machine learning ; Nitrogen ; nitrogen and density management ; nitrogen nutrition index ; Nutrition ; Nutrition assessment ; panicles ; Planting ; Planting density ; Population ; Population structure ; Population studies ; Recommender systems ; Remote sensing ; Rice ; simulation models ; Weather ; yield forecasting</subject><ispartof>Agronomy (Basel), 2024-05, Vol.14 (5), p.1028</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</cites><orcidid>0000-0002-0476-3318 ; 0000-0002-1429-0622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059242728/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059242728?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids></links><search><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Ma, Huimiao</creatorcontrib><creatorcontrib>Gong, Weibin</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Liu, Aixin</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yuan, Qianru</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><title>Agronomy (Basel)</title><description>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</description><subject>Agricultural production</subject><subject>Agriculture</subject><subject>agronomy</subject><subject>China</subject><subject>Crops</subject><subject>Efficiency</subject><subject>Ensemble learning</subject><subject>ensemble learning model</subject><subject>Environmental factors</subject><subject>Environmental management</subject><subject>Fertilizers</subject><subject>Food security</subject><subject>Food supply</subject><subject>Information management</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Nitrogen</subject><subject>nitrogen and density management</subject><subject>nitrogen nutrition index</subject><subject>Nutrition</subject><subject>Nutrition assessment</subject><subject>panicles</subject><subject>Planting</subject><subject>Planting density</subject><subject>Population</subject><subject>Population structure</subject><subject>Population studies</subject><subject>Recommender systems</subject><subject>Remote sensing</subject><subject>Rice</subject><subject>simulation models</subject><subject>Weather</subject><subject>yield forecasting</subject><issn>2073-4395</issn><issn>2073-4395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk2PUyEUhm-MJk7G2bskceOmI1zgclnWyczYpI7Gj4Wrm1M4dGhuoQLX2D_hb5a2xo-JsOBw8j7vG8JpmueMXnKu6StYpxjids8ElYy2_aPmrKWKzwTX8vFf9dPmIucNrUsz3lN11vyYBxj32WcSHSn3SK6dQ1OO1_dxN41QfAzkY0mTKVNCAsGS6_DN18AthgIjuQFTYqpEIB-8QXLnS4prDORuKskf8UWw-P2IfvE4WvIaMtoD8BbMvQ9Ilggp-LB-1jxxMGa8-HWeN59vrj9dvZkt390urubLmRG8LbOeCwdcoTNWK2Md66SQzCJnVLXUgeMrNCsNaiX7VvYKOomGc6s1lRYqet4sTr42wmbYJb-FtB8i-OHYiGk9QCrejDhQ1ndCcEqFUUK3PXSarShjtAM0XUer18uT1y7FrxPmMmx9NjiOEDBOeeBMcqk4ZbpKXzyQbuKU6g9UFZW6Fa1q-z-qNdR8H1wsCczBdJgrLXnPhDrEXv5HVbfFrTcxoPO1_w9AT4BJMeeE7ve7GR0OYzQ8HCP-E_lCuyU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Jia, Yan</creator><creator>Zhao, Yu</creator><creator>Ma, Huimiao</creator><creator>Gong, Weibin</creator><creator>Zou, Detang</creator><creator>Wang, Jin</creator><creator>Liu, Aixin</creator><creator>Zhang, Can</creator><creator>Wang, Weiqiang</creator><creator>Xu, Ping</creator><creator>Yuan, Qianru</creator><creator>Wang, Jing</creator><creator>Wang, Ziming</creator><creator>Zhao, Hongwei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0476-3318</orcidid><orcidid>https://orcid.org/0000-0002-1429-0622</orcidid></search><sort><creationdate>20240501</creationdate><title>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</title><author>Jia, Yan ; Zhao, Yu ; Ma, Huimiao ; Gong, Weibin ; Zou, Detang ; Wang, Jin ; Liu, Aixin ; Zhang, Can ; Wang, Weiqiang ; Xu, Ping ; Yuan, Qianru ; Wang, Jing ; Wang, Ziming ; Zhao, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural production</topic><topic>Agriculture</topic><topic>agronomy</topic><topic>China</topic><topic>Crops</topic><topic>Efficiency</topic><topic>Ensemble learning</topic><topic>ensemble learning model</topic><topic>Environmental factors</topic><topic>Environmental management</topic><topic>Fertilizers</topic><topic>Food security</topic><topic>Food supply</topic><topic>Information management</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Nitrogen</topic><topic>nitrogen and density management</topic><topic>nitrogen nutrition index</topic><topic>Nutrition</topic><topic>Nutrition assessment</topic><topic>panicles</topic><topic>Planting</topic><topic>Planting density</topic><topic>Population</topic><topic>Population structure</topic><topic>Population studies</topic><topic>Recommender systems</topic><topic>Remote sensing</topic><topic>Rice</topic><topic>simulation models</topic><topic>Weather</topic><topic>yield forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Zhao, Yu</creatorcontrib><creatorcontrib>Ma, Huimiao</creatorcontrib><creatorcontrib>Gong, Weibin</creatorcontrib><creatorcontrib>Zou, Detang</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Liu, Aixin</creatorcontrib><creatorcontrib>Zhang, Can</creatorcontrib><creatorcontrib>Wang, Weiqiang</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Yuan, Qianru</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Ziming</creatorcontrib><creatorcontrib>Zhao, Hongwei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Agronomy (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yan</au><au>Zhao, Yu</au><au>Ma, Huimiao</au><au>Gong, Weibin</au><au>Zou, Detang</au><au>Wang, Jin</au><au>Liu, Aixin</au><au>Zhang, Can</au><au>Wang, Weiqiang</au><au>Xu, Ping</au><au>Yuan, Qianru</au><au>Wang, Jing</au><au>Wang, Ziming</au><au>Zhao, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning</atitle><jtitle>Agronomy (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>1028</spage><pages>1028-</pages><issn>2073-4395</issn><eissn>2073-4395</eissn><abstract>With the development of rice varieties and mechanized planting technology, reliable and efficient nitrogen and planting density status diagnosis and recommendation methods have become critical to the success of precise nitrogen and planting density management in crops. In this study, we combined population structure, plant shape characteristics, environmental weather conditions, and management information data using a machine learning model to simulate the responses of the yield and nitrogen nutrition index and developed an ensemble learning model-based nitrogen and planting density recommendation strategy for different varieties of rice types. In the third stage, the NNI and yield prediction effect of the ensemble learning model was more significantly improved than that of the other two stages. The scenario analysis results show that the optimal yields and nitrogen nutrition indices were obtained with a density and nitrogen amount of 100.1 × 104 plant/ha and 161.05 kg·ha−1 for the large-spike type variety of rice, 75.08 × 104 plant/ha and 159.52 kg·ha−1 for the intermediate type variety of rice, and 75.08 × 104 plant/ha and 133.47 kg·ha−1 for the panicle number type variety of rice, respectively. These results provide a scientific basis for the nitrogen application and planting density for a high yield and nitrogen nutrition index of rice in northeast China.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/agronomy14051028</doi><orcidid>https://orcid.org/0000-0002-0476-3318</orcidid><orcidid>https://orcid.org/0000-0002-1429-0622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4395
ispartof Agronomy (Basel), 2024-05, Vol.14 (5), p.1028
issn 2073-4395
2073-4395
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0186443004c74928a691b01106aec660
source Publicly Available Content Database
subjects Agricultural production
Agriculture
agronomy
China
Crops
Efficiency
Ensemble learning
ensemble learning model
Environmental factors
Environmental management
Fertilizers
Food security
Food supply
Information management
Learning algorithms
Machine learning
Nitrogen
nitrogen and density management
nitrogen nutrition index
Nutrition
Nutrition assessment
panicles
Planting
Planting density
Population
Population structure
Population studies
Recommender systems
Remote sensing
Rice
simulation models
Weather
yield forecasting
title Analysis of the Effects of Population Structure and Environmental Factors on Rice Nitrogen Nutrition Index and Yield Based on Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Effects%20of%20Population%20Structure%20and%20Environmental%20Factors%20on%20Rice%20Nitrogen%20Nutrition%20Index%20and%20Yield%20Based%20on%20Machine%20Learning&rft.jtitle=Agronomy%20(Basel)&rft.au=Jia,%20Yan&rft.date=2024-05-01&rft.volume=14&rft.issue=5&rft.spage=1028&rft.pages=1028-&rft.issn=2073-4395&rft.eissn=2073-4395&rft_id=info:doi/10.3390/agronomy14051028&rft_dat=%3Cgale_doaj_%3EA795381470%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-834fa37efcd97cdf165451de310720faf3becb9a7b582587a65ec33d9905dafa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059242728&rft_id=info:pmid/&rft_galeid=A795381470&rfr_iscdi=true