Loading…

An electrochemical sensor for high sensitive determination of lysozyme based on the aptamer competition approach

Protein is a kind of basic substance that constitutes a life body. The determination of protein is very important for the research of biology, medicine, and other fields. Lysozyme is relatively small and simple in structure among all kinds of proteins, so it is often used as a standard target detect...

Full description

Saved in:
Bibliographic Details
Published in:Open Chemistry 2021-03, Vol.19 (1), p.299-306
Main Authors: Song, Kai, Chen, Wenwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Protein is a kind of basic substance that constitutes a life body. The determination of protein is very important for the research of biology, medicine, and other fields. Lysozyme is relatively small and simple in structure among all kinds of proteins, so it is often used as a standard target detector in the study of aptamer sensor for protein detection. In this paper, a lysozyme electrochemical sensor based on aptamer competition mechanism is proposed. We have successfully prepared a signal weakening electrochemical sensor based on the lysozyme aptamer competition mechanism. The carboxylated multi-walled carbon nanotubes (MWCNTs) were modified on the glassy carbon electrode, and the complementary aptamer DNA with amino group was connected to MWCNTs. Because of the complementary DNA of daunomycin into the electrode, the electrochemical signal is generated. When there is a target, the aptamer binds to lysozyme with higher binding power, and the original complementary chain breaks down, resulting in the loss of daunomycin inserted into the double chain and the weakening of electrochemical signal. Differential pulse voltammetry was used to determine lysozyme, the response range was 1–500 nM, the correlation coefficient was 0.9995, and the detection limit was 0.5 nM. In addition, the proposed sensor has good selectivity and anti-interference.
ISSN:2391-5420
2391-5420
DOI:10.1515/chem-2021-0026