Loading…
Basolateral amygdala oscillations enable fear learning in a biophysical model
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role the...
Saved in:
Published in: | eLife 2024-11, Vol.12 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3809-aba1961eaeae13cb3b46e790e74aa06582a43c8ef7f5ab541847e8c7c492a5cc3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 12 |
creator | Cattani, Anna Arnold, Don B McCarthy, Michelle Kopell, Nancy |
description | The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations. |
doi_str_mv | 10.7554/eLife.89519 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_019dcb82422a4c1a9ef0155d27056de6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A817816979</galeid><doaj_id>oai_doaj_org_article_019dcb82422a4c1a9ef0155d27056de6</doaj_id><sourcerecordid>A817816979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3809-aba1961eaeae13cb3b46e790e74aa06582a43c8ef7f5ab541847e8c7c492a5cc3</originalsourceid><addsrcrecordid>eNptkt2L1DAUxYso7jLuk-9S8EWRGZMmaZInWRc_BkYEP8C3cJvedjO0yWzTivPfm5lZ162YQBJufveEHE6WPaVkJYXgr3HjGlwpLah-kJ0XRJAlUfzHw3vns-wixi1JQ3KlqH6cnTEtNBGUnGef3kIMHYw4QJdDv29r6CAP0bouVV3wMUcPVYd5gzDkXVq8823ufA555cLueh-dTb19qLF7kj1qoIt4cbsvsu_v3327-rjcfP6wvrrcLC1TRC-hAqpLipAmZbZiFS9RaoKSA5BSqAI4swob2QioBKeKS1RWWq4LENayRbY-6dYBtmY3uB6GvQngzLEQhtbAMDrboSFU17ZSBS-SqKWgsSFUiLqQRJQ1lknrzUlrN1U91hb9mLyYic5vvLs2bfhpKBWaC0aSwotbhSHcTBhH07toMRnoMUzRMMoYp0ImeJE9_wfdhmnwyasDxblItui_VAvpB843IT1sD6LmUlGpaKnlgVr9h0qzxt7Z4LFxqT5reDlrSMyIv8YWphjN-uuXOfvqxNohxDhgc2cIJeaQPHNMnjkmL9HP7nt4x_7JGfsNwCrSNQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3134459619</pqid></control><display><type>article</type><title>Basolateral amygdala oscillations enable fear learning in a biophysical model</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Cattani, Anna ; Arnold, Don B ; McCarthy, Michelle ; Kopell, Nancy</creator><creatorcontrib>Cattani, Anna ; Arnold, Don B ; McCarthy, Michelle ; Kopell, Nancy</creatorcontrib><description>The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.89519</identifier><identifier>PMID: 39590510</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>Amygdala ; Analysis ; Animals ; Associative learning ; Basolateral Nuclear Complex - physiology ; Biophysics ; BLA interneurons ; Computational and Systems Biology ; Electrophysiological recording ; Fear - physiology ; Fear conditioning ; Firing pattern ; gamma rhythms ; Interneurons ; Interneurons - physiology ; Laboratory animals ; Learning - physiology ; Models, Neurological ; Neuronal Plasticity - physiology ; Neurons ; Neuroscience ; Potassium ; Rhythm ; Rodents ; SOM ; Synapses ; Synaptic plasticity ; theta ; Theta Rhythm - physiology ; Theta rhythms ; VIP</subject><ispartof>eLife, 2024-11, Vol.12</ispartof><rights>2023, Cattani et al.</rights><rights>COPYRIGHT 2024 eLife Science Publications, Ltd.</rights><rights>2023, Cattani et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023, Cattani et al 2023 Cattani et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3809-aba1961eaeae13cb3b46e790e74aa06582a43c8ef7f5ab541847e8c7c492a5cc3</cites><orcidid>0000-0001-7378-1440 ; 0000-0003-2317-1737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3134459619/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3134459619?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39590510$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cattani, Anna</creatorcontrib><creatorcontrib>Arnold, Don B</creatorcontrib><creatorcontrib>McCarthy, Michelle</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><title>Basolateral amygdala oscillations enable fear learning in a biophysical model</title><title>eLife</title><addtitle>Elife</addtitle><description>The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.</description><subject>Amygdala</subject><subject>Analysis</subject><subject>Animals</subject><subject>Associative learning</subject><subject>Basolateral Nuclear Complex - physiology</subject><subject>Biophysics</subject><subject>BLA interneurons</subject><subject>Computational and Systems Biology</subject><subject>Electrophysiological recording</subject><subject>Fear - physiology</subject><subject>Fear conditioning</subject><subject>Firing pattern</subject><subject>gamma rhythms</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Laboratory animals</subject><subject>Learning - physiology</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Potassium</subject><subject>Rhythm</subject><subject>Rodents</subject><subject>SOM</subject><subject>Synapses</subject><subject>Synaptic plasticity</subject><subject>theta</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><subject>VIP</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkt2L1DAUxYso7jLuk-9S8EWRGZMmaZInWRc_BkYEP8C3cJvedjO0yWzTivPfm5lZ162YQBJufveEHE6WPaVkJYXgr3HjGlwpLah-kJ0XRJAlUfzHw3vns-wixi1JQ3KlqH6cnTEtNBGUnGef3kIMHYw4QJdDv29r6CAP0bouVV3wMUcPVYd5gzDkXVq8823ufA555cLueh-dTb19qLF7kj1qoIt4cbsvsu_v3327-rjcfP6wvrrcLC1TRC-hAqpLipAmZbZiFS9RaoKSA5BSqAI4swob2QioBKeKS1RWWq4LENayRbY-6dYBtmY3uB6GvQngzLEQhtbAMDrboSFU17ZSBS-SqKWgsSFUiLqQRJQ1lknrzUlrN1U91hb9mLyYic5vvLs2bfhpKBWaC0aSwotbhSHcTBhH07toMRnoMUzRMMoYp0ImeJE9_wfdhmnwyasDxblItui_VAvpB843IT1sD6LmUlGpaKnlgVr9h0qzxt7Z4LFxqT5reDlrSMyIv8YWphjN-uuXOfvqxNohxDhgc2cIJeaQPHNMnjkmL9HP7nt4x_7JGfsNwCrSNQ</recordid><startdate>20241126</startdate><enddate>20241126</enddate><creator>Cattani, Anna</creator><creator>Arnold, Don B</creator><creator>McCarthy, Michelle</creator><creator>Kopell, Nancy</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7378-1440</orcidid><orcidid>https://orcid.org/0000-0003-2317-1737</orcidid></search><sort><creationdate>20241126</creationdate><title>Basolateral amygdala oscillations enable fear learning in a biophysical model</title><author>Cattani, Anna ; Arnold, Don B ; McCarthy, Michelle ; Kopell, Nancy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3809-aba1961eaeae13cb3b46e790e74aa06582a43c8ef7f5ab541847e8c7c492a5cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amygdala</topic><topic>Analysis</topic><topic>Animals</topic><topic>Associative learning</topic><topic>Basolateral Nuclear Complex - physiology</topic><topic>Biophysics</topic><topic>BLA interneurons</topic><topic>Computational and Systems Biology</topic><topic>Electrophysiological recording</topic><topic>Fear - physiology</topic><topic>Fear conditioning</topic><topic>Firing pattern</topic><topic>gamma rhythms</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Laboratory animals</topic><topic>Learning - physiology</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Potassium</topic><topic>Rhythm</topic><topic>Rodents</topic><topic>SOM</topic><topic>Synapses</topic><topic>Synaptic plasticity</topic><topic>theta</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><topic>VIP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cattani, Anna</creatorcontrib><creatorcontrib>Arnold, Don B</creatorcontrib><creatorcontrib>McCarthy, Michelle</creatorcontrib><creatorcontrib>Kopell, Nancy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cattani, Anna</au><au>Arnold, Don B</au><au>McCarthy, Michelle</au><au>Kopell, Nancy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basolateral amygdala oscillations enable fear learning in a biophysical model</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2024-11-26</date><risdate>2024</risdate><volume>12</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>39590510</pmid><doi>10.7554/eLife.89519</doi><orcidid>https://orcid.org/0000-0001-7378-1440</orcidid><orcidid>https://orcid.org/0000-0003-2317-1737</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2024-11, Vol.12 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_019dcb82422a4c1a9ef0155d27056de6 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Amygdala Analysis Animals Associative learning Basolateral Nuclear Complex - physiology Biophysics BLA interneurons Computational and Systems Biology Electrophysiological recording Fear - physiology Fear conditioning Firing pattern gamma rhythms Interneurons Interneurons - physiology Laboratory animals Learning - physiology Models, Neurological Neuronal Plasticity - physiology Neurons Neuroscience Potassium Rhythm Rodents SOM Synapses Synaptic plasticity theta Theta Rhythm - physiology Theta rhythms VIP |
title | Basolateral amygdala oscillations enable fear learning in a biophysical model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basolateral%20amygdala%20oscillations%20enable%20fear%20learning%20in%20a%20biophysical%20model&rft.jtitle=eLife&rft.au=Cattani,%20Anna&rft.date=2024-11-26&rft.volume=12&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.89519&rft_dat=%3Cgale_doaj_%3EA817816979%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3809-aba1961eaeae13cb3b46e790e74aa06582a43c8ef7f5ab541847e8c7c492a5cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3134459619&rft_id=info:pmid/39590510&rft_galeid=A817816979&rfr_iscdi=true |