Loading…

To Be or Not to Be Expressed: The First Evidence of a Nucleolar Dominance Tissue-Specificity in Brachypodium hybridum

Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, (genome composition DDSS), which is a pol...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2021-12, Vol.12, p.768347-768347
Main Authors: Borowska-Zuchowska, Natalia, Robaszkiewicz, Ewa, Mykhailyk, Serhii, Wartini, Joanna, Pinski, Artur, Kovarik, Ales, Hasterok, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nucleolar dominance (ND) is an epigenetic, developmentally regulated phenomenon that describes the selective inactivation of 35S rDNA loci derived from one progenitor of a hybrid or allopolyploid. The presence of ND was documented in an allotetraploid grass, (genome composition DDSS), which is a polyphyletic species that arose from crosses between two putative ancestors that resembled the modern (DD) and (SS). In this work, we investigated the developmental stability of ND in genotype 3-7-2 and compared it with the reference genotype ABR113. We addressed the question of whether the ND is established in generative tissues such as pollen mother cells (PMC). We examined condensation of rDNA chromatin by fluorescence hybridization employing state-of-art confocal microscopy. The transcription of rDNA homeologs was determined by reverse-transcription cleaved amplified polymorphic sequence analysis. In ABR113, the ND was stable in all tissues analyzed (primary and adventitious root, leaf, and spikes). In contrast, the 3-7-2 individuals showed a strong upregulation of the S-genome units in adventitious roots but not in other tissues. Microscopic analysis of the 3-7-2 PMCs revealed extensive decondensation of the D-genome loci and their association with the nucleolus in meiosis. As opposed, the S-genome loci were always highly condensed and localized outside the nucleolus. These results indicate that genotype-specific loss of ND in occurs probably after fertilization during developmental processes. This finding supports our view that is an attractive model to study ND in grasses.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2021.768347