Loading…
Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy
Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immu...
Saved in:
Published in: | International journal of molecular sciences 2022-03, Vol.23 (6), p.3238 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3 |
container_end_page | |
container_issue | 6 |
container_start_page | 3238 |
container_title | International journal of molecular sciences |
container_volume | 23 |
creator | Huang, Jau-Ling Chang, Yu-Tzu Hong, Zhen-Yang Lin, Chang-Shen |
description | Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included. |
doi_str_mv | 10.3390/ijms23063238 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_01a9ae347a124b0092183afd019cef4b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_01a9ae347a124b0092183afd019cef4b</doaj_id><sourcerecordid>2642433504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3</originalsourceid><addsrcrecordid>eNpdkU2P0zAQhiMEYj_gxhlF4sKBwvgjiX1BqrosFK1AQuVsTe1JmpLYWTtB2n9PSpdVl5Mt-_HjmXmz7BWD90Jo-NDu-8QFlIIL9SQ7Z5LzBUBZPT3Zn2UXKe0BuOCFfp6diUJwVRbqPPu6wdjQ2Pomv_q2zK-wx4byH5SG4BPl6F2-7vvJU77akf01hNaPeR1ivvRja9FbivlmRxGHuxfZsxq7RC_v18vs5_WnzerL4ub75_VqebOwslLjQm2drR0Cr0m5SsgtKF5yYAwBKitqqUBoUevCaas5OiRButJaSw2ugq24zNZHrwu4N0Nse4x3JmBr_h6E2BiMc3EdGWCo5_eyQsbnj0BzpgTWDpi2VMuD6-PRNUzbnpwlP0bsHkkf3_h2Z5rw2yhdcF6yWfD2XhDD7URpNH2bLHUdegpTMryUEkBIrmb0zX_oPkzRz6M6UFwKUYCcqXdHysaQUqT6oRgG5hC4OQ18xl-fNvAA_0tY_AH4TqVr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642433504</pqid></control><display><type>article</type><title>Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Huang, Jau-Ling ; Chang, Yu-Tzu ; Hong, Zhen-Yang ; Lin, Chang-Shen</creator><creatorcontrib>Huang, Jau-Ling ; Chang, Yu-Tzu ; Hong, Zhen-Yang ; Lin, Chang-Shen</creatorcontrib><description>Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23063238</identifier><identifier>PMID: 35328658</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Angiogenesis ; Apoptosis ; Ataxia ; Biomarkers ; Breast ; Breast cancer ; Cancer immunotherapy ; Cancer therapies ; Cell cycle ; cGAS-STING ; Chemotherapy ; clinical trial ; Clinical trials ; Colorectal cancer ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA damage response ; DNA methylation ; DNA Repair ; Gene expression ; Genes ; Genomic instability ; Growth factors ; Humans ; Immune checkpoint ; Immune response ; Immune system ; Immunity ; Immunotherapy ; Inflammation ; Interferon ; Kinases ; Leukemia ; Mutation ; Neoplasms - drug therapy ; Neoplasms - genetics ; Pancreatic cancer ; PARP ; Patients ; Polymerization ; Proteins ; Review ; RNA polymerase ; Therapeutic targets</subject><ispartof>International journal of molecular sciences, 2022-03, Vol.23 (6), p.3238</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3</citedby><cites>FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3</cites><orcidid>0000-0001-7415-2187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642433504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642433504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35328658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jau-Ling</creatorcontrib><creatorcontrib>Chang, Yu-Tzu</creatorcontrib><creatorcontrib>Hong, Zhen-Yang</creatorcontrib><creatorcontrib>Lin, Chang-Shen</creatorcontrib><title>Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.</description><subject>Angiogenesis</subject><subject>Apoptosis</subject><subject>Ataxia</subject><subject>Biomarkers</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer therapies</subject><subject>Cell cycle</subject><subject>cGAS-STING</subject><subject>Chemotherapy</subject><subject>clinical trial</subject><subject>Clinical trials</subject><subject>Colorectal cancer</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA damage response</subject><subject>DNA methylation</subject><subject>DNA Repair</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomic instability</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune checkpoint</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Immunotherapy</subject><subject>Inflammation</subject><subject>Interferon</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Pancreatic cancer</subject><subject>PARP</subject><subject>Patients</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Review</subject><subject>RNA polymerase</subject><subject>Therapeutic targets</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2P0zAQhiMEYj_gxhlF4sKBwvgjiX1BqrosFK1AQuVsTe1JmpLYWTtB2n9PSpdVl5Mt-_HjmXmz7BWD90Jo-NDu-8QFlIIL9SQ7Z5LzBUBZPT3Zn2UXKe0BuOCFfp6diUJwVRbqPPu6wdjQ2Pomv_q2zK-wx4byH5SG4BPl6F2-7vvJU77akf01hNaPeR1ivvRja9FbivlmRxGHuxfZsxq7RC_v18vs5_WnzerL4ub75_VqebOwslLjQm2drR0Cr0m5SsgtKF5yYAwBKitqqUBoUevCaas5OiRButJaSw2ugq24zNZHrwu4N0Nse4x3JmBr_h6E2BiMc3EdGWCo5_eyQsbnj0BzpgTWDpi2VMuD6-PRNUzbnpwlP0bsHkkf3_h2Z5rw2yhdcF6yWfD2XhDD7URpNH2bLHUdegpTMryUEkBIrmb0zX_oPkzRz6M6UFwKUYCcqXdHysaQUqT6oRgG5hC4OQ18xl-fNvAA_0tY_AH4TqVr</recordid><startdate>20220317</startdate><enddate>20220317</enddate><creator>Huang, Jau-Ling</creator><creator>Chang, Yu-Tzu</creator><creator>Hong, Zhen-Yang</creator><creator>Lin, Chang-Shen</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7415-2187</orcidid></search><sort><creationdate>20220317</creationdate><title>Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy</title><author>Huang, Jau-Ling ; Chang, Yu-Tzu ; Hong, Zhen-Yang ; Lin, Chang-Shen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>Apoptosis</topic><topic>Ataxia</topic><topic>Biomarkers</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer therapies</topic><topic>Cell cycle</topic><topic>cGAS-STING</topic><topic>Chemotherapy</topic><topic>clinical trial</topic><topic>Clinical trials</topic><topic>Colorectal cancer</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA damage response</topic><topic>DNA methylation</topic><topic>DNA Repair</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomic instability</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune checkpoint</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Immunotherapy</topic><topic>Inflammation</topic><topic>Interferon</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Pancreatic cancer</topic><topic>PARP</topic><topic>Patients</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Review</topic><topic>RNA polymerase</topic><topic>Therapeutic targets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jau-Ling</creatorcontrib><creatorcontrib>Chang, Yu-Tzu</creatorcontrib><creatorcontrib>Hong, Zhen-Yang</creatorcontrib><creatorcontrib>Lin, Chang-Shen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jau-Ling</au><au>Chang, Yu-Tzu</au><au>Hong, Zhen-Yang</au><au>Lin, Chang-Shen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2022-03-17</date><risdate>2022</risdate><volume>23</volume><issue>6</issue><spage>3238</spage><pages>3238-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35328658</pmid><doi>10.3390/ijms23063238</doi><orcidid>https://orcid.org/0000-0001-7415-2187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2022-03, Vol.23 (6), p.3238 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_01a9ae347a124b0092183afd019cef4b |
source | Publicly Available Content Database; PubMed Central |
subjects | Angiogenesis Apoptosis Ataxia Biomarkers Breast Breast cancer Cancer immunotherapy Cancer therapies Cell cycle cGAS-STING Chemotherapy clinical trial Clinical trials Colorectal cancer Deoxyribonucleic acid DNA DNA Damage DNA damage response DNA methylation DNA Repair Gene expression Genes Genomic instability Growth factors Humans Immune checkpoint Immune response Immune system Immunity Immunotherapy Inflammation Interferon Kinases Leukemia Mutation Neoplasms - drug therapy Neoplasms - genetics Pancreatic cancer PARP Patients Polymerization Proteins Review RNA polymerase Therapeutic targets |
title | Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20DNA%20Damage%20Response%20and%20Immune%20Checkpoint%20for%20Anticancer%20Therapy&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Huang,%20Jau-Ling&rft.date=2022-03-17&rft.volume=23&rft.issue=6&rft.spage=3238&rft.pages=3238-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23063238&rft_dat=%3Cproquest_doaj_%3E2642433504%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-8bdcfda02fe8d734b08262011a007c3f480393f95d9c92adae3e97999490d70b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642433504&rft_id=info:pmid/35328658&rfr_iscdi=true |